Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95054
U.S.A. 650-960-1300

Part No. 817-1826-10
July 2003, Revision A

»
@ Sun

microsystems

StarOffice™ 7 Office Suite
A Sun™ ONE Software Offering

Basic Programmer's Guide

Copyrights and Trademarks

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054. , U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described in this document. In particular, and without limitation, these
intellectual property rights may include one or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S.
and in other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying, distribution, and decompilation. No part of the product or of this document
may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.
This product is based in part on the work of the Independent JPEG Group and The FreeType Project.

Portions Copyright 2000 SuSE, Inc. Word for Word Copyright © 1996 Inso Corp. International CorrectSpell spelling correction system Copyright © 1995 by Lernout & Hauspie Speech
Products N.V. All rights reserved.

Sun, Sun Microsystems, the Sun logo, Java, Solaris, StarOffice, the Butterfly logo, the Solaris logo, and the StarOffice logo are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries.

UNIX is a registered trademark in the U.S. and in other countries, exclusively licensed through X/Open Company, Ltd. Screen Beans and Screen Beans clipart characters are registered
trademarks of A Bit Better Corporation.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED "AS IS" AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE
HELD TO BE LEGALLY INVALID.

Copyright © 2003 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, California 95054, Etats-Unis. Tous droits réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants a la technologie incorporée dans ce produit. En particulier, et sans la limitation, ces droits de propriété intellectuels
peuvent inclure un ou plus des brevets américains énumérés a http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en attente dans les Etats -
Unis et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit
ou document ne peut étre reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y ena.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caracteres, est protégé par un copyright et licencié par des fournisseurs de Sun.
Ce produit repose en partie sur le travail de I'Independent JPEG Group et de The FreeType Project.

Portions Copyright 2000 SuSE, Inc. Word for Word Copyright © 1996 Inso Corp. Systeme de correction orthographique International CorrectSpell Copyright © 1995 de Lernout & Hauspie
Speech Products N.V. Tous droits réservés.

Sun, Sun Microsystems, le logo Sun, Java, Solaris, StarOffice, le logo Butterfly, le logo Solaris et le logo StarOffice sont des marques de fabrique ou des marques déposées de Sun
Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exlusivement par X/Open Company, Ltd.
Les Screen Beans et les objets graphiques prédessinés Screen Beans sont des marques déposées de A Bit Better Corporation.
Acquisitions fédérales : logiciel commercial ; les utilisateurs gouvernementaux sont soumis aux conditions générales standard de la licence.

LA DOCUMENTATION est fournie « TELLE QUELLE » et TOUTES LES CONDITIONS, REPRESENTATIONS ET GARANTIES EXPRESSES OU TACITES, Y COMPRIS TOUTE GARANTIE
TACITE CONCERNANT LA QUALITE MARCHANDE, L'APTITUDE A UN USAGE PARTICULIER OU LA NON-VIOLATION DE DROITS DE TIERS SERONT REJETEES, EXCEPTE
DANS LE CAS OU L'EXCLUSION OU LA LIMITATION DE TELLES GARANTIES NE SERAIT PAS AUTORISEE PAR LA LEGISLATION EN VIGUEUR.

Contents

1 Introduction 9
About StarOffice Basic 9
Intended Users of StarOffice Basic 10
Use of StarOffice Basic 10
Structure of This Guide 10
More Information 11

2 The Language of StarOffice Basic 13
An Overview of a StarOffice Basic Program 13
Program Lines 13
Comments 14
Markers 15
Working With Variables 15
Implicit Variable Declaration 15
Explicit VVariable Declaration 16
Strings 17
From a Set of ASCII Characters to Unicode 17
String Variables 18
Specification of Explicit Strings 18
Numbers 19
Integer Variables 19
Long Integer Variables 19
Single Variables 20
Double Variables 20
Currency Variables 20
Specification of Explicit Numbers 20
True and False 23
Boolean Variables 23
Date and Time Details 23
Date Variables 23
Data Fields 24

Simple Arrays 24
Specified Value for Start Index 25
Multi-Dimensional Data Fields 25
Dynamic Changes in the Dimensions of Data Fields 25
Scope and Life Span of Variables 27
Local Variables 27
Public Domain Variables 28
Global Variables 28
Private Variables 29
Constants 30
Operators 30
Mathematical Operators 30
Logical Operators 30
Comparison Operators 31
Branching 31
If..Then...Else 31
Select...Case 32
Loops 33
For...Next 33
Do...Loop 35
Programming Example: Sorting With Embedded Loops 36
Procedures and Functions 37
Procedures 37
Functions 37
Terminating Procedures and Functions Prematurely 38
Passing Parameters 39
Optional Parameters 40
Recursion 41
Error Handling 41
The On Error Instruction 41
The Resume Command 42
Queries Regarding Error Information 42
Tips for Structured Error Handling 43

3 The Runtime Library of StarOffice Basic 45
Conversion Functions 45
Implicit and Explicit Type Conversions 45
Checking the Content of Variables 47
Strings 49
Working with Sets of Characters 49
Accessing Parts of a String 49

4 StarOffice™ 7 Basic Programmer's Guide

Search and Replace 50

Formatting Strings 51
Date and Time 52

Specification of Date and Time Details within the Program Code 52

Extracting Date and Time Details 53

Retrieving System Date and Time 54
Files and directories 54

Administering Files 55

Writing and Reading Text Files 59
Message and Input Boxes 60

Displaying Messages 60

Input Box For Querying Simple Strings 62
Other functions 62

Beep 62

Shell 62

Wait 63

Environ 63

4 Introduction to the StarOffice APl 65
Universal Network Objects (UNO) 65
Properties and Methods 66
Properties 66
Methods 67

Module, Services and Interfaces 67

Tools for Working with UNO 68
The supportsService Method 68
Debug Properties 68
API Reference 69

An Overview of a Few Central Interfaces 69
Creating Context-Dependent Objects 69
Named Access to Subordinate Objects 70
Index-Based Access to Subordinate Objects 71
Iterative Access to Subordinate Objects 72

5 Working with StarOffice Documents 73
The StarDesktop 73
Basic Information about Documents in StarOffice 74

Creating, Opening and Importing Documents 75
Document Objects 77

Templates 81
Details about various formatting options 82

Contents 5

6 Text Documents 85

The Structure of Text Documents 85
Paragraphs and Paragraph Portions 86

Editing Text Documents 94
The TextCursor 94
Searching for Text Portions 98
Replacing Text Portions 101

Text Documents: More than Just Text 102
Tables 103
Text Frames 107
Text Fields 110
Bookmarks 114

7 Spreadsheet Documents 115

The Structure of Table-Based Documents (Spreadsheets) 115
Spreadsheets 115
Rows and Columns 116
Cells 119
Formatting 123

Editing Spreadsheet Documents Efficiently 133
Cell Ranges 133
Searching and Replacing Cell Contents 135

8 Drawings and Presentations 137
The Structure of Drawings 137
Pages 137
Elementary Properties of Drawing Objects 139
An Overview of Various Drawing Objects 148
Editing Drawing Objects 155
Grouping Objects 155
Rotating and Shearing Drawing Objects 156
Searching and Replacing 157
Presentations 158
Working With Presentations 158

9 Diagrams (Charts) 159
Using Diagrams in Spreadsheets 159
The Structure of Diagrams 160
The Individual Elements of a Diagram 160
Example 166
3D Diagrams 167

6 StarOffice™ 7 Basic Programmer's Guide

10

11

Stacked Diagrams 167
Diagram Types 167

Line Diagrams 167

Area Diagrams 168

Bar Diagrams 168

Pie Diagrams 168

Database Access 169
SQL: a Query Language 169
Types of Database Access 170
Data Sources 170
Queries 171
Links with Database Forms 173
Database Access 174
Iteration of Tables 174
Type-Specific Methods for Retrieving Values 176
The ResultSet Variants 176
Methods for Navigation in ResultSets 177
Modifying Data Records 178

Dialogs 179
Working With Dialogs 179
Creating Dialogs 179
Closing Dialogs 181
Access to Individual Control Elements 181
Working With the Model of Dialogs and Control Elements
Properties 182
Name and Title 182
Position and Size 182
Focus and Tabulator Sequence 183
Multi-Page Dialogs 183
Events 185
Parameters 187
Mouse Events 188
Keyboard Events 189
Focus Events 190
Control Element-Specific Events 191
Dialog Control Elements in Detail 191
Buttons 192
Option Buttons 193
Checkboxes 193

182

Contents 7

Text Fields 194
List Boxes 195

12 Forms 197
Working with Forms 197
Determining Object Forms 198
The Three Aspects of a Control Element Form 198
Accessing the Model of Control Element Forms 199
Accessing the View of Control Element Forms 200
Accessing the Shape Object of Control Element Forms 201
Control Element Forms in Detail 202
Buttons 202
Option Buttons 203
Checkboxes 204
Text Fields 205
List Boxes 206
Database Forms 207
Tables 207

13 Appendix 209
VBA Migrations Tips 209
StarOffice 5.x Migration Tips 209

8 StarOffice™ 7 Basic Programmer's Guide

CHAPTER 1

Introduction

This guide provides an introduction to programming with StarOffice 7 Basic and indicates the
possible applications provided by using StarOffice Basic in StarOffice. To get the most out of this
book, you should be familiar with other programming languages.

Extensive examples are provided to help you quickly develop your own StarOffice Basic
programs.

A number of migration tips for Microsoft Visual Basic programmers or those who have worked with earlier
versions of StarOffice Basic are provided throughout the guide. These are indicated by a small symbol at
the edge of the page. The Appendix of this guide contains an index of all of the migration tips so that you
can quickly navigate to the tip that you want to read.

About StarOffice Basic

The StarOffice Basic programming language has been developed especially for StarOffice and is
firmly integrated in the Office package.

As the name suggests, StarOffice Basic is a programming language from the Basic family. Anyone
who has previously worked with other Basic languages — in particular with Visual Basic or Visual
Basic for Applications (VBA) from Microsoft — will quickly become accustomed to StarOffice Basic.
Large sections of the basic constructs of StarOffice Basic are compatible with Visual Basic.

The StarOffice Basic programming language can be divided into four components:

= The language of StarOffice Basic: Defines the elementary linguistic constructs, for example, for
variable declarations, loops, and functions.

= The runtime library: Provides standard functions which have no direct reference to StarOffice,
for example, functions for editing numbers, strings, date values, and files.

= The StarOffice APl (Application programming Interface): Permits access to StarOffice
documents and allows these to be created, saved, modified, and printed.

= The Dialog Editor: Creates personal dialog windows and provides scope for the adding of
control elements and event handlers.

Compatibility between StarOffice Basic and VBA relates to the StarOffice Basic language as well as the
runtime library. The StarOffice APl and the Dialog Editor are not compatible with VBA (standardizing these
interfaces would have made many of the concepts provided in StarOffice impossible).

Intended Users of StarOffice Basic

The scope of application for StarOffice Basic begins where the standard functions of StarOffice end.
Routine tasks can therefore be automated in StarOffice Basic, links can be made to other programs
— for example to a database server —and complex activities can be performed at the press of a
button using predefined scripts.

StarOffice Basic offers complete access to all StarOffice functions, supports all functions, modifies
document types, and provides options for creating personal dialog windows.

Use of StarOffice Basic

StarOffice Basic can be used by any StarOffice user without any additional programs or aids.
Even in the standard installation, StarOffice Basic has all the components needed to create its own
Basic macros, including:

= The integrated development environment (IDE) which provides an editor for creating and
testing macros.

= The interpreter which is needed to run StarOffice Basic macros.

= The interfaces to various StarOffice applications, which allow for direct access to Office
documents.

Structure of This Guide

The first three chapters introduce readers to StarOffice Basic:
= Chapter 2: The Language of StarOffice Basic

= Chapter 3: The Runtime Library of StarOffice Basic

= Chapter 4: Introduction to the StarOffice API

These chapters provide an overview of StarOffice Basic and should be read by anyone who
intends to write StarOffice Basic programs.

The remaining chapters describe the individual components of the StarOffice API in more detail
and can be read selectively as required:

= Chapter 5: Working with StarOffice Documents
= Chapter 6: Text Documents

= Chapter 7: Spreadsheet Documents

= Chapter 8: Drawings and Presentations

= Chapter 9: Diagrams (Charts)

= Chapter 10: Database Access

= Chapter 11: Dialogs

= Chapter 12: Forms

10 StarOffice™ 7 Basic Programmer's Guide

More Information

The components of the StarOffice API that are discussed in this guide were selected based on their
practical benefits for the StarOffice Basic programmer. In general, only parts of the interfaces are
discussed. For a more detailed picture, see the API reference which is available on the Internet at:

http://api.openoffice.org/comon/ref/conl sun/star/nodul e-i x. ht m

The Developer's Guide describes the StarOffice APl in more detail than this guide, but is primarily
intended for Java and C++ programmers. Anyone who is already familiar with StarOffice Basic
programming can find additional information in the Developer's Guide on StarOffice Basic and
StarOffice programming. You can download the Developer's Guide on the Internet from:

http://api.openoffice.org/Devel oper sCui de/ Devel oper sGui de. ht m

Programmers who want to work directly with Java or C++ rather than StarOffice Basic should
consult the StarOffice Developer's Guide instead of this guide. StarOffice programming with Java
or C++ is a considerably more complex process than programming with StarOffice Basic.

Chapter 1 Introduction 11

12 StarOffice™ 7 Basic Programmer's Guide

CHAPTER 2

The Language of StarOffice Basic

StarOffice Basic belongs to the family of Basic languages. Many parts of StarOffice Basic are
identical to Microsoft Visual Basic for Applications and Microsoft Visual Basic. Anyone who has
already worked with these languages can quickly become accustomed to StarOffice Basic.

Programmers of other languages - such as Java, C++, or Delphi — should also find it easy to
familiarize themselves with StarOffice Basic. StarOffice Basic is a fully-developed procedural
programming language and no longer uses rudimentary control structures, such as GoTo and
GoSub.

You can also benefit from the advantages of object-oriented programming since an interface in
StarOffice Basic enables you to use external object libraries. The entire StarOffice APl is based on
these interfaces, which are described in more detail in the following chapters of this document.

This chapter provides an overview of the key elements and constructs of the StarOffice Basic
language, as well as the framework in which applications and libraries are oriented to StarOffice
Basic.

An Overview of a StarOffice Basic Program

StarOffice Basic is an interpreter language. Unlike C++ or Turbo Pascal, the StarOffice compiler
does not create executable or self-extracting files that are capable of running automatically. Instead,
you can execute a StarOffice Basic program by pressing a button. The code is first checked for
obvious errors and then executed line by line.

Program Lines

The Basic interpreter's line-oriented execution produces one of the key differences between Basic
and other programming languages. Whereas the position of hard line breaks in the source code of
Java, C++, or Delphi programs is irrelevant, each line in a Basic program forms a self-contained
unit. Function calls, mathematical expressions, and other linguistic elements, such as function and
loop headers, must be completed on the same line that they begin on.

13

If there is not enough space, or if this results in long lines, then several lines can be linked together

by adding underscores _. The following example shows how four lines of a mathematical
expression can be linked:

LongExpressi on = (Expressionl * Expression2) + _
(Expression3 * Expressiond) + _
(Expression5 * Expression6) + _
(Expression7 * Expression8)

The underscore must always be the last character in a linked line and cannot be followed by a
space or a tab, otherwise the code generates an error.

In addition to linking individual lines, StarOffice Basic, you can use colons to divide one line into
several sections so that there is enough space for several expressions. The assignments

a=1
a=a+1
a=a+1

can be written as follows:

Comments

In addition to the program code to be executed, a StarOffice Basic program can also contain
comments that explain the individual parts of the program and provide important information that
can be helpful at a later point.

StarOffice Basic provides two methods for inserting comments in the program code:

= All characters that follow an apostrophe are treated as comments:

DmA ' This is a conment for variable A

= The keyword Rem followed by the comment:
Rem This comment is introduced by the keyword Rem

A comment usually includes all characters up to the end of the line. StarOffice Basic then interprets
the following line as a regular instruction again. If comments cover several lines, each line must be
identified as a comment:

DimB ' This coment for variable Bis relatively |ong
and stretches over several |ines. The
comment character nust therefore be repeated
' in each line.

14 StarOffice™ 7 Basic Programmer's Guide

Markers

A StarOffice Basic program can contain dozens, hundreds, or even thousands of markers, which are
names for variables, constants, functions, and so on.
When you select a name for a marker, the following rules apply:

= Markers can only contain Latin letters, numbers, and underscores ().
= The first character of a marker must be a letter or an underscore.

= Markers cannot contain special characters, such as d 41R.

= The maximum length of a marker is 255 characters.

= Nodistinction is made between uppercase and lowercase characters. The OneTest Vari abl e
marker, for example, defines the same variable as onet est Var i abl e and ONETESTVARI ABLE.

There is, however, one exception to this rule: a distinction is made between uppercase and
lowercase characters for UNO-API constants. More information about UNO is presented in
Chapter 4.)

The rules for constructing markers are different in StarOffice Basic than in VBA. Dor example, StarOffice
Basic does not allow special characters in markers, since they can cause problems in international
projects.

Here are a few examples of correct and incorrect markers:

Sur nane ' Correct

Sur nanme5 ' Correct (number 5 is not the first digit)

First Name ' Incorrect (spaces are not permtted)

Déj aVu " Incorrect (letters such as é, a are not permtted)
5Sur nanes ' Incorrect (the first character nust not be a nunber)

Fi rst, Nanme ' Incorrect (commas and full stops are not permitted)

Working With Variables

Implicit Variable Declaration

Basic languages are designed to be easy to use. As a result, StarOffice Basic enables the creation of
a variable through simple usage and without an explicit declaration. In other words, a variable
exists from the moment that you include it in your code. Depending on the variables that are
already present, the following example declares up to three new variables:

a=Db+c

Declaring variables implicitly is not good programming practice because it can result in the
inadvertent introduction of a new variable through, for example, a typing error. Instead of
producing an error message, the interpreter initializes the typing error as a new variable with a
value of 0. It can be very difficult to locate errors of this kind in your code.

Chapter 2 The Language of StarOffice Basic 15

Explicit Variable Declaration

To prevent errors caused by an implicit declaration of variables, StarOffice Basic provides a switch
called:

Option Explicit

This must be listed in the first program line of each module and ensures that an error message is
issued if one of the variables used is not declared. The Qpt i on Expl i ci t switch should be
included in all Basic modules.

In its simplest form, the command for an explicit declaration of a variable is as follows:
Di m MyVar

This example declares a variable with the name MyVar and the type variant. A variant is a
universal variable that can record all conceivable values, including strings, whole numbers,
floating point figures, and Boolean values. Here are a few examples of Variant variables:

M/Var = "Hello Worl d" ' Assignnment of a string

M/Var = 1 ' Assignnment of a whol e nunber

M/Var = 1.0 ' Assignnment of a floating point nunber
MyVar = True ' Assignnment of a Bool ean val ue

The variables declared in the previous example can even be used for different variable types in the
same program. Although this provides considerable flexibility, it is best to restrict a variable to one
variable type. When StarOffice Basic encounters an incorrectly defined variable type in a particular
context, an error message is generated.

Use the following style when you make a type-bound variable declaration:
D m MyVar As | nteger ' Declaration of a variable of the integer type

The variable is declared as an integer type and can record whole number values. You can also use
the following style to declare an integer type variable:

Di m MyVar % ' Declaration of a variable of the integer type
The Di minstruction can record several variable declarations:
Dim MyVar1, MyVar2

If you want to assign the variables to a permanent type, you must make separate assignments for
each variable:

Dim M/Var1l As Integer, My/Var2 As |nteger

If you do not declare the type for a variable, StarOffice Basic assigns the variable a variant type. For
example, in the following variable declaration, MyVar 1 becomes a variant and MyVar 2 becomes an
integer:

Dim MyVar1, My/Var2 As |nteger

16 StarOffice™ 7 Basic Programmer's Guide

The following sections list the variable types that are available in StarOffice Basic and describe how
they can be used and declared.

Strings

Strings, together with numbers, form the most important basic types of StarOffice Basic. A string
consists of a sequence of consecutive individual characters. The computer saves the strings
internally as a sequence of numbers where each number represents one specific character.

From a Set of ASCII Characters to Unicode

Character sets match characters in a string with a corresponding code (numbers and characters) in
a table that describes how the computer is to display the string.

The ASCII Character Set

The ASCII character set is a set of codes that represent numbers, characters, and special symbols by
one byte. The 0 to 127 ASCII codes correspond to the alphabet and to common symbols (such as
periods, brackets, and commas), as well as some special screen and printer control codes. The
ASCII character set is commonly used as a standard format for transferring text data between
computers.

However, this character set does not include a range of special characters used in Europe, such as
4, dand 1, as well as other character formats, such as the Cyrillic alphabet.

The ANSI Character Set

Microsoft based its Windows product on the American National Standards Institute (ANSI)
character set, which was gradually extended to include characters that are missing from the ASCII
character set.

Code Pages

The ISO 8859 character sets provide an international standard. The first 128 characters of the 1SO
character set correspond to the ASCII character set. The 1SO standard introduces new character sets
(code pages) so that more languages can be correctly displayed. However, as a result, the same
character value can represent different characters in different languages.

Unicode

Unicode increases the length of a character to four bytes and combines different character sets to
create a standard to depict as many of the world’s languages as possible. Version 2.0 of Unicode is
now supported by many programs — including StarOffice and StarOffice Basic.

Chapter 2 The Language of StarOffice Basic 17

String Variables

StarOffice Basic saves strings as string variables in Unicode. A string variable can store up to 65535
characters. Internally, StarOffice Basic saves the associated Unicode value for every character. The
working memory needed for a string variable depends on the length of the string.

Example declaration of a string variable:
Dim Variable As String
You can also write this declaration as:

D m Vari abl e$

When porting VBA applications, ensure that the maximum allowed string length in StarOffice Basic is
observed (65535 characters).

Specification of Explicit Strings
To assign an explicit string to a string variable, enclose the string in quotation marks (*).

Dim MyString As String
MyString =" This is a test"

To split a string across two lines, add a plus sign at the end of the first line:
Dim MyString As String
M/String = "This string is so long that it" + _

"has been split over two lines."

To include a quotation mark (") in a string, enter it twice at the relevant point:

Dim MyString As String
M/String = "a ""-quotation nark." ' produces a "-quotation mark

18 StarOffice™ 7 Basic Programmer's Guide

Numbers

StarOffice Basic supports five basic types for processing numbers;
= Integer

= Long Integer

= Float

= Double

= Currency

Integer Variables

Integer variables can store any whole number between -32768 and 32767. An integer variable can

take up to two bytes of memory. The type declaration symbol for an integer variable is %
Calculations that use integer variables are very fast and are particularly useful for loop counters. If
you assign a floating point number to an integer variable, the number is rounded up or down to
the next whole number.

Example declarations for integer variables:

Di m Vari abl e As | nteger
Di m Vari abl e%

Long Integer Variables

Long integer variables can store any whole number between 2147483648 and 2147483647. A long
integer variable can takes up to four bytes of memory. The type declaration symbol for a long
integer is & Calculations with long integer variables are very fast and are particularly useful for
loop counters. If you assign a floating point number to a long integer variable, the number is
rounded up or down to the next whole number.

Example declarations for long integer variables:

Di m Vari abl e as Long
Di m Vari abl e&

Chapter 2 The Language of StarOffice Basic 19

Single Variables

Single variables can store any positive or negative floating point number between 3.402823 x 10*
and 1.401298 x 10“. A single variable can take up to four bytes of memory. The type declaration

symbol for a single variable is! .

Originally, single variables were used to reduce the computing time required for the more precise
double variables. However, these speed considerations no longer apply, reducing the need for
single variables.

Example declarations for single variables:

Di m Vari abl e as Single
Di m Vari abl e!

Double Variables

Double variables can store any positive or negative floating point numbers between
1.79769313486232 x 10°*® and 4.94065645841247 x 10°%, A double variable can take up to eight bytes
of memory. Double variables are suitable for precise calculations. The type declaration symbol is #.

Example declarations of double variables:

Di m Vari abl e As Doubl e
Di m Vari abl e#

Currency Variables

Currency variables differ from the other variable types by the way they handle values. The decimal
point is fixed and is followed by four decimal places. The variable can contain up to 15 numbers
before the decimal point. A currency variable can store any value between —922337203685477.5808
and +922337203685477.5807 and takes up to eight bytes of memory. The type declaration symbol
for a currency variable is @

Currency variables are mostly intended for business calculations that yield unforeseeable rounding
errors due to the use of floating point numbers.

Example declarations of currency variables:

Di m Vari abl e As Currency
Di m Vari abl e@

Specification of Explicit Numbers

Numbers can be presented in several ways, for example, in decimal format or in scientific notation,
or even with a different base than the decimal system. The following rules apply to numerical
characters in StarOffice Basic:

20 StarOffice™ 7 Basic Programmer's Guide

Whole Numbers

The simplest method is to work with whole numbers. They are listed in the source text without a
comma separating the thousand figure:

Dim A As | nteger
Dim B As Fl oat

A
B

1210
2438

The numbers can be preceded by both a plus (+) or minus (-) sign (with or without a space in
between):

Dim A As | nteger
Dim B As Fl oat

A=+ 121
B =- 243

Decimal Numbers

When you type a decimal number, use a period (.) as the decimal point. This rule ensures that
source texts can be transferred from one country to another without conversion.

Dim A As | nteger
Dim B As | nteger
Dim C As Fl oat

A = 1223.53 ' is rounded
B = - 23446. 46 ' is rounded
C = + 3532.76323

You can also use plus (+) or minus (-) signs as prefixes for decimal numbers (again with or without
spaces).

If a decimal number is assigned to an integer variable, StarOffice Basic rounds the figure up or
down.

Chapter 2 The Language of StarOffice Basic 21

Exponential Writing Style

StarOffice Basic allows numbers to be specified in the exponential writing style, for example, you can
write 1.5e-10 for the number 1.5 x 10°(0.00000000015). The letter "e" can be lowercase or uppercase
with or without a plus sign (+) as a prefix.

Here are a few correct and incorrect examples of numbers in exponential format:

Dim A As Doubl e

A = 1.43E2 ' Correct

A =+ 1.43E2 ' Correct (space between plus and basi c nunber)

A= - 1.43E2 ' Correct (space between minus and basi c nunber)

A = 1.43E-2 ' Correct (negative exponent)

A = 1.43E -2 ' Incorrect (spaces not permtted within the nunber)
A = 1,43E-2 ' Incorrect (commas not permtted as deci mal points)
A = 1.43E2.2 ' Incorrect (exponent nust be a whol e nunber)

Note that in the first and third incorrect examples that no error message is generated even though
the variables return incorrect values. The expression

A = 1.43E -2

is interpreted as 1.43 minus 2, which corresponds to the value -0.57. However, the value 1.43 * 10°
(corresponding to 0.0143) was the intended value. With the value

A = 1.43E2.2
StarOffice Basic ignores the part of the exponent after the decimal point and interprets the expression as

A = 1.43E2

Hexadecimal Values

In the hexadecimal system (base 16 system), a 2-digit number corresponds to precisely one byte.
This allows numbers to be handled in a manner which more closely reflects machine architecture.
In the hexadecimal system, the numbers 0 to 9 and the letters A to F are used as numbers. An A
stands for the decimal number 10, while the letter F represents the decimal number 15. StarOffice
Basic lets you use whole numbered hexadecimal values, so long as they are preceded by &H.

Dim A As Long

A
A

&HFF ' Hexadeci mal val ue FF, corresponds to the decimal val ue 255
&H10 ' Hexadeci mal val ue 10, corresponds to the deci mal val ue 16

22 StarOffice™ 7 Basic Programmer's Guide

Octal Values

StarOffice Basic also understands the octal system (base 8 system), which uses the numbers 0to 7.
You must use whole numbers that are preceded by &O.

Dim A As Long

A
A

&0O77 ' Cctal value 77, corresponds to the deci mal val ue 63
&010 ' Cctal value 10, corresponds to the deci mal val ue 8

True and False

Boolean Variables

Boolean variables can only contain one of two values: Tr ue or Fal se. They are suitable for binary
specifications that can only adopt one of two statuses. A Boolean value is saved internally as a two-
byte integer value, where 0 corresponds to the Fal se and any other value to Tr ue. There is no
type declaration symbol for Boolean variables. The declaration can only be made using the
supplement As Boolean.

Example declaration of a Boolean variable:

Dim Vari abl e As Bool ean

Date and Time Detalils

Date Variables

Date variables can contain date and time values. When saving date values, StarOffice Basic uses an
internal format that permits comparisons and mathematical operations on date and time values.
There is no type declaration symbol for date variables. The declaration can only be made using the
supplement As Date.

Example declaration of a date variable:

Dim Vari abl e As Date

Chapter 2 The Language of StarOffice Basic 23

Data Fields

In addition to simple variables (scalars), StarOffice Basic also supports data fields (arrays). A data
field contains several variables, which are addressed through an index.

Simple Arrays

An array declaration is similar to that of a simple variable declaration. However, unlike the
variable declaration, the array name is followed by brackets which contain the specifications for the
number of elements. The expression

D m MArray(3)
declares an array that has four variables of the variant data type, namely MyAr r ay(0),
M/Array(1), MArray(2) and MyArray(3).

You can also declare type-specific variables in an array. For example, the following line declares an
array with four integer variables:

Di m Myl nt eger (3) As | nteger

In the previous examples, the index for the array always begins with the standard start value of
zero. As an alternative, a validity range with start and end values can be specified for the data field
declaration. The following example declares a data field that has six integer values and which can be
addressed using the indexes 5 to 10:

Dim Myl nt eger (5 To 10)

The indexes do not need to be positive values. The following example also shows a correct
declaration, but with negative data field limits:

Di m Myl nt eger (-10 To -5)
It declares an integer data field with 6 values that can be addressed using the indexes -10 to -5.
There are three limits that you must observe when you define data field indexes:
= The smallest possible index is -32768.
= The largest possible index is 32767.

= The maximum number of elements (within a data field dimension) is 16368.

Other limit values sometimes apply for data field indexes in VBA. The same also applies to the maximum
number of elements possible per dimension. The values valid there can be found in the relevant VBA
documentation.

24 StarOffice™ 7 Basic Programmer's Guide

Specified Value for Start Index

The start index of a data field usually begins with the value 0. Alternatively, you can change the
start index for all data field declarations to the value 1 by using the call:

Option Base 1

The call must be included in the header of a module if you want it to apply to all array declarations
in the module. However, this call does not affect the UNO sequences that are defined through the
StarOffice API whose index always begins with 0. To improve clarity, you should avoid using
Option Base 1.

The number of elements in an array is not affected if you use Option Base 1, only the start index
changes. The declaration

Option Base 1
Di m Myl nt eger (3)

creates 4 integer variables which can be described with the expressions Myl nt eger (1),
Ml nteger (2), Wi nteger (3) and Myl nt eger (4).

In StarOffice Basic, the expression Option Base 1 does not affect the number of elements in an array as it
does in VBA. It is, rather, the start index which moves in StarOffice Basic. While the declaration

M/l nt eger (3) creates three integer values in VBA with the indexes 1 to 3, the same declaration in
StarOffice Basic creates four integer values with the indexes 1 to 4.

Multi-Dimensional Data Fields

In addition to single dimensional data fields, StarOffice Basic also supports work with multi-
dimensional data fields. The corresponding dimensions are separated from one another by
commas. The example

Dim Myl nt Array(5, 5)

defines an integer array with two dimensions, each with 6 indexes (can be addressed through the
indexes 0 to 5). The entire array can record a total of 6 x 6 = 36 integer values.

Although you can define hundreds of dimensions in StarOffice Basic Arrays; however, the amount
of available memory limits the number of dimensions you can have.

Dynamic Changes in the Dimensions of Data Fields

The previous examples are based on data fields of a specified dimension. You can also define
arrays in which the dimension of the data fields dynamically changes. For example, you can define
an array to contain all of the words in a text that begin with the letter A. As the number of these
words is initially unknown, you need to be able to subsequently change the field limits. To do this
in StarOffice Basic, use the following call:

ReDi m MyArr ay(10)

Chapter 2 The Language of StarOffice Basic 25

Unlike VBA, where you can only dimension dynamic arrays by using Dim MyArray(), StarOffice Basic lets
you change both static and dynamic arrays using ReDim.

The following example changes the dimension of the initial array so that it can record 11 or 21

values:

Dim M/Array(4) As |nteger ' Declaration with five el enments
ReDi m MArray(10) As Integer ' Increase to 11 el ements

ReDi m MyArray(20) As |nteger " Increase to 21 el enents

When you reset the dimensions of an array, you can use any of the options outlined in the previous
sections. This includes declaring multi-dimensional data fields and specifying explicit start and end
values. When the dimensions of the data field are changed, all contents are lost. If you want to keep
the original values, use the Pr eser ve command:

Di m M/Array(10) As Integer ' Defining the initial
' di mensi ons

ReDi m Preserve M/Array(20) As Integer ' Increase in
' data field, while
' retaining content

When you use Pr eser ve, ensure that the number of dimensions and the type of variables remain
the same.

Pr eser ve, StarOffice Basic lets you change other dimensions as well.

Unlike VBA, where only the upper limit of the last dimension of a data field can be changed through

declaration.

If you use ReDi mwith Pr eser ve, you must use the same data type as specified in the original data field

26 StarOffice™ 7 Basic Programmer's Guide

Scope and Life Span of Variables

A variable in StarOffice Basic has a limited life span and a limited scope from which it can be read
and used in other program fragments. The amount of time that a variable is retained, as well as
where it can be accessed from, depends on its specified location and type.

Local Variables

Variable that are declared in a function or a procedure are called local variables:

Sub Test
Di m Myl nt eger As | nteger

End Sub

Local variables only remain valid as long as the function or the procedure is executing, and then
are reset to zero. Each time the function is called, the values generated previously are not available.

To keep the previous values, you must define the variable as St ati c:

Sub Test
Static Myl nteger As |nteger

End Sub

Unlike VBA, StarOffice Basic ensures that the name of a local variable is not used simultaneously as a
global and a private variable in the module header. When you port a VBA application to StarOffice Basic,
you must change any duplicate variable names.

Chapter 2 The Language of StarOffice Basic 27

Public Domain Variables

Public domain variables are defined in the header section of a module by the keyword Di m These
variables are available to all of the modules in their library:

Module A:
Dim A As | nteger

Sub Test
Flip
Fl op

End Sub

Sub Flip
A=A+1
End Sub

Module B:
Sub Fl op

A=A-1
End Sub

The value of variable A is not changed by the Test function, but is increased by one in the Fl i p
function and decreased by one in the Fl op function. Both of these changes to the variable are
global.

You can also use the keyword Publ i ¢ instead of Di mto declare a public domain variable:

Public A As Integer

A public domain variable is only available so long as the associated macro is executing and then
the variable is reset.

Global Variables

In terms of their function, global variables are similar to public domain variables, except that their
values are retained even after the associated macro has executed. Global variables are declared in

the header section of a module using the keyword d obal :

G obal A As |nteger

28 StarOffice™ 7 Basic Programmer's Guide

Private Variables

Pri vat e variables are only available in the module in which they are defined. Use the keyword

Pri vat e to define the variable:

Private M/l nteger As |nteger

If several modules contain a Pri vat e variable with the same name, StarOffice Basic creates a

different variable for each occurrence of the name. In the following example, both module Aand B
have a Pri vat e-variable called C. The Test function first sets the Pri vat e variable in module A

and then the Pri vat e variable in module B.

Module A:
Private C As |nteger

Sub Test
Set Modul eA
Set Modul eB

Showvar A
Showvar B !
End Sub

Sub Set nodul eeA
A =10
End Sub

Sub Showvar A
MsgBox C !
End Sub

Module B:
Private C As |nteger
Sub Set Modul eB
A = 20
End Sub
Sub Showvar B

MsgBox C :
End Sub

Sets the variable C fromnodule A
Sets the variable C fromnodul e B

Shows the variable C fromnodule A (= 10)
Shows the variable C from nodule B (= 20)

Shows the variable C from nodul e A

Shows the variable C from nodul e B.

Chapter 2 The Language of StarOffice Basic 29

Constants

In StarOffice Basic, use the keyword Const to declare a constant.
Const A = 10
You can also specify the constant type in the declaration:

Const B As Double = 10

Operators

StarOffice Basic understands common mathematical, logical, and comparison operators.

Mathematical Operators

Mathematical operators can be applied to all numbers types, whereas the + operator can also be
used to link strings.

+ Addition of numbers and date values, linking of strings

- Subtraction of numbers and date values

* Multiplication of numbers

/ Division of numbers

\ Division of numbers with a whole number result (rounded)
A Raising the power of numbers

MOD module operation (calculation of the rest of a division)

Logical Operators

Logical operators allow you to link elements according to the rules of Boolean algebra. If the
operators are applied to Boolean values, the link provides the result required directly. If used in
conjunction with integer and long integer values, the linking is done at the bit level.

AND And linking

oR Or linking

XOR Exclusive or linking

NOT Negation

EQV Equivalent test (both parts Tr ue or Fal se)

I M Implication (if the first expression is true, then the second must also be true)

30 StarOffice™ 7 Basic Programmer's Guide

Comparison Operators

Comparison operators can be applied to all elementary variable types (humbers, date details,
strings, and Boolean values).

= Equality of numbers, date values and strings

<> Inequality of numbers, date values and strings

> Greater than check for numbers, date values and strings

>= Greater than or equal to check for numbers, date values and strings
< Less than check for numbers, date values and strings

<= Less than or equal to check for numbers, date values and strings

‘ StarOffice Basic does not support the VBA Li ke comparison operator.

Branching

Use branching statements to restrict the execution of a code block until a particular condition is
satisfied.

If...Then...Else

The most common branching statement is the | f statement as shown in the following example:

If A > 3 Then
B=2
End | f

The B = 2 assignment only occurs when value of variable A is greater than three. A variation of
the | f statementisthe | f/ El se clause:

If A > 3 Then
B=2
El se
B=0
End | f

In this example, the variable B is assigned the value of 2 when A is greater than 3, otherwise B is
assigned the value of 0.

Chapter 2 The Language of StarOffice Basic 31

For more complex statements, you can cascade the | f statement, for example:

If A =0 Then
B=0

El self A < 3 Then
B=1

El se
B=2

End |f

If the value of variable A equals zero, B is assigned the value 0. If Ais less than 3 (but not equal to
zero), then B is assigned the value 1. In all other instances (that is, if Ais greater than or equal to 3),
B is assigned the value 2.

Select...Case

The Sel ect . . . Case instruction is an alternative to the cascaded | f statement and is used when
you need to check a value against various conditions:

Sel ect Case DayOf Week
Case 1:
NaneOf Weekday = " Sunday"
Case 2:
NameOf Weekday = " Monday"
Case 3:
NameOf Weekday = " Tuesday"
Case 4:
NaneOf Weekday = "Wednesday"
Case 5:
NaneOf Weekday = " Thur sday"
Case 6:
NameCOf Weekday = "Friday"
Case 7:
NameOf Weekday = " Sat ur day"
End Sel ect

In this example, the name of a weekday corresponds to a number, so that the Day Of Week variable
is assigned the value of 1 for Sunday, 2 f or Monday value, and so on.

32 StarOffice™ 7 Basic Programmer's Guide

The Sel ect command is not restricted to simple 1:1 assignments — you can also specify
comparison operators or lists of expressions in a Case branch. The following example lists the
most important syntax variants:

Sel ect Case Var
Case 1 To 5

Var is between the nunbers 1 and 5
Case 6, 7, 8
' ... Var is 6, 7 or 8
Case Var > 8 And Var < 11
Var is greater than 8 and | ess than 11
Case El se
' ... all other instances

End Sel ect

Loops

A loop executes a code block for the number of passes that are specified. You can also have loops
with an undefined number of passes.

For...Next

The For . . . Next loop has a fixed number of passes. The loop counter defines the number of times
that the loop is to be executed. In the following example,

Dim I
For I =1 To 10

' ... Inner part of |oop
Next |

variable | is the loop counter, with an initial value of 1. The counter is incremented by 1 at the end
of each pass. When variable | equals 10, the loop stops.

Chapter 2 The Language of StarOffice Basic 33

If you want to increment the loop counter by a value other than 1 at the end of each pass, use the

the St ep function:

Dim |
For I =1 To 10 Step 0.5

I nner part of |oop
Next |

In the preceding example, the counter is increased by 0.5 at the end of each pass and the loop is

executed 19 times.

You can also use negative step values:

Dim I
For | = 10 To 1 Step -1

' ... Inner part of |oop
Next |

In this example, the counter begins at 10 and is reduced by 1 at the end of each pass until the
counter is 1.

The Exi t For instruction allows you to exit a For loop prematurely. In the following example, the
loop is terminated during the fifth pass:

Dim |
For I =1 To 10
If | =5 Then
Exit For
End | f
' ... Inner part of |oop
Next |

The For Each. .. Next loop variant in VBA is not supported in StarOffice Basic.

34 StarOffice™ 7 Basic Programmer's Guide

Do...Loop

The Do. . . Loop is not linked to a fixed number of passes. Instead, the Do. . . Loop is executed
until a certain condition is met. There are four variants of the Do. . . Loop (in the following
examples, A > 10 represents any condition):

1. TheDo Wil e. .. Loop variant

Do Wiile A > 10
| oop body
Loop

checks whether the condition is still satisfied before every pass and only then executes the loop.

2. TheDo Until...Loop variant

Do Until A > 10
| oop body
Loop

executes the loop until the condition is no longer satisfied.

3. The Do. .. Loop Wil e variant

Do
| oop body
Loop Wiile A > 10

only checks the condition after the first loop pass and terminates if this condition is satisfied.

4. The Do...Loop Until variant

Do
| oop body
Loop Until A > 10

also checks its condition after the first pass, but undertakes the loop until the condition is no
longer satisfied.

Asinthe For. .. Next loop,the Do. .. Loop also provides a terminate command. The Exi t Do
command can exit at loop at any point within the loop.

Do
If A =4 Then
Exit Do
End | f
| oop body
Wiile A > 10

Chapter 2 The Language of StarOffice Basic 35

Programming Example: Sorting With Embedded Loops

There are many ways to use loops, for example, to search lists, return values, or execute complex
mathematical tasks. The following example is an algorithm that uses to loops to sort a list by
names.

Sub Sort
DimEntry(1 To 10) As String
Di m Count As | nteger
Di m Count 2 As | nteger
Dim Tenp As String

Entry(1l) = "Patty"
Entry(2) = "Kurt"
Entry(3) = "Thomas"
Entry(4) = "M chael "
Entry(5) = "David"
Entry(6) = "Cathy"
Entry(7) = "Susie"
Entry(8) = "Edward"
Entry(9) = "Christine"
Entry(10) = "Jerry"

For Count = 1 To 10
For Count2 = Count + 1 To 10
If Entry(Count) > Entry(Count?2) Then
Tenp = Entry(Count)
Entry(Count) = Entry(Count 2)
Entry(Count2) = Tenp
End | f
Next Count 2
Next Count

For Count = 1 To 10
Print Entry(Count)
Next Count
End Sub

The values are interchanged as pairs several times until they are finally sorted in ascending order.
Like bubbles, the variables gradually migrate to the right position. For this reason, this algorithm is
also known as a Bubble Sort.

36 StarOffice™ 7 Basic Programmer's Guide

Procedures and Functions

Procedures and functions form pivotal points in the structure of a program. They provide the
framework for dividing a complex problem into various sub-tasks.

Procedures
A procedure executes an action without providing an explicit value. Its syntax is
Sub Test
here is the actual code of the procedure
End Sub

The example defines a procedure called Test that contains code that can be accessed from any
point in the program. The call is made by entering the procedure name at the relevant point of the
program:

Test

Functions

A function, just like a procedure, combines a block of programs to be executed into one logical unit.
However, unlike a procedure, a function provides a return value.

Function Test
here is the actual code of the function

Test = 123
End Function

The return value is assigned using simple assignment. The assignment does not need to be placed
at the end of the function, but can be made anywhere in the function.

The preceding function can be called within a program as follows:
Dm A
A = Test

The code defines a variable A and assigns the result of the Test function to it.

Chapter 2 The Language of StarOffice Basic 37

The return value can be overwritten several times within the function. As with classic variable
assignment, the function in this example returns the value that was last assigned to it.

Functi on Test

Test = 12

Test = 123
End Functi on

In this example, the return value of the function is 123.

If an assignment is stopped, the function returns a zer o value (number 0 for numerical values and
a blank for strings).

The return value of a function can be any type. The type is declared in the same way as a variable
declaration:

Function Test As | nteger
here is the actual code of the function
End Functi on

If the specification of an explicit value is stopped, the type of the return value is assigned as
variant.

Terminating Procedures and Functions Prematurely

In StarOffice Basic, you can use the Exi t Sub and Exi t Functi on commands to terminate a
procedure or function prematurely, for example, for error handling. These commands stop the
procedure or function and return the program to the point at which the procedure and/or function
was called up.

The following example shows a procedure which terminates implementation when the
Er r or Cccur ed variable has the value Tr ue.

Sub Test
Di m Error Cccured As Bool ean

If ErrorCQccured Then
Exit Sub
End | f

End Sub

38 StarOffice™ 7 Basic Programmer's Guide

Passing Parameters

Functions and procedures can receive one or more parameters. Essential parameters must be
enclosed in brackets after the function or procedure names. The example

Sub Test (A As Integer, B As String)
End Sub

defines a procedure that expects an integer value A and a string B as parameters.

Parameters are normally passed by Reference in StarOffice Basic. Changes made to the variables are
retained when the procedure or function is exited:

Sub Test
Dim A As | nteger
A =10

ChangeVal ue(A)

' The paraneter A now has the val ue 20
End Sub
Sub ChangeVal ue(TheVal ue As | nteger)

TheVal ue = 20
End Sub

In this example, the value A that is defined in the Test function is passed as a parameter to the
ChangeVal ue function. The value is then changed to 20 and passed to TheVal ue, which is
retained when the function is exited.

You can also pass a parameter as a value if you do not want subsequent changes to the parameter to
affect the value that is originally passed. To specify that a parameter is to be passed as a value,
ensure that the ByVal keyword precedes the variable declaration in the function header.

In the preceding example, if we replace the ChangeVal ue function with the

Sub ChangeVal ue(ByVal TheVal ue As | nteger)
TheVal ue = 20
End Sub

function, then the superordinate variable A remains unaffected by this change. After the call for the
ChangeVal ue function, variable A retains the value 10.

The method for passing parameters to procedures and functions in StarOffice Basic is virtually identical to
that in VBA. By default, the parameters are passed by reference. To pass parameters as values, use the
ByVal keyword. In VBA, you can also use the keyword By Ref to force a parameter to be passed by
reference. StarOffice Basic does not support this keyword because this is already the default procedure in
StarOffice Basic.

As a rule, functions and procedures in StarOffice Basic are Publ i ¢c. The Publ i c and Pri vat e keywords
used in VBA are not supported in StarOffice Basic.

Chapter 2 The Language of StarOffice Basic 39

Optional Parameters

Functions and procedures can only be called up if all the necessary parameters are passed during
the call.

StarOffice Basic lets you define parameters as optional , that is, if the corresponding values are not
included in a call, StarOffice Basic passes an empty parameter. In the example

Sub Test(A As Integer, Optional B As Integer)

End Sub

the A parameter is obligatory, whereas the B parameter is optional.

The | sM ssi ng function checks whether a parameter has been passed or is left out.

Sub Test (A As Integer, Optional B As Integer)
Dim B_Local As |nteger

' Check whether B paraneter is actually present
If Not IsMssing (B) Then
B Local =B ' B paraneter present
El se
B Local =0 ' B paraneter missing -> default value 0
End |f

' ... Start the actual function

End Sub

The example first tests whether the B parameter has been passed and, if necessary, passes the same
parameter to the internal B_Local variable. If the corresponding parameter is not present, then a
default value (in this instance, the value 0) is passed to B_ Local rather than the passed
parameter.

The option provided in VBA for defining default values for optional parameters is not supported in
StarOffice Basic.

The Par amAr r ay keyword present in VBA is not supported in StarOffice Basic.

40 StarOffice™ 7 Basic Programmer's Guide

Recursion

Recursion is now possible in StarOffice Basic. A recursive procedure or function is one that has the
ability to call itself until it detects that some base condition has been satisfied. When the function is
called with the base condition, a result is returned.

The following example uses a recursive function to calculate the factorial of the numbers 42, - 42,
and 3. 14:

Sub Main
Msgbox Cal cul ateFactorial (42) ' Displays 1, 40500611775288E+51
Msgbox Cal cul ateFactorial (-42) ' Displays "lnvalid nunber for factorial!"
Msgbox Cal cul at eFactorial (3.14) ' Displays "lInvalid nunber for factorial!"
End Sub

Function Cal cul ateFactorial (Nunber)
If Nunmber < 0 O Nunmber <> Int(Nunber) Then
Cal cul ateFactorial = "Invalid nunber for factorial!"
El sel f Nunmber = 0 Then
Cal cul ateFactorial =1
El se

This is the recursive call:
Cal cul at eFactorial = Nunber * Cal cul ateFactorial (Nunber - 1)
Endi f
End Function

The example returns the factorial of the number 42 by recursively calling the
Cal cul at eFact ori al function until it reaches the base condition of 0! = 1.

‘ Note that the recursion level in StarOffice Basic is limited at this time to 500.

Error Handling

Correct handling of error situations is one of the most time-consuming tasks of programming.
StarOffice Basic provides a range of tools for simplifying error handling.

The On Error Instruction
The On Error instruction is the key to any error handling:

Sub Test
On Error Goto ErrorHandl er

' ... undertake task during which an error may occur
Exit Sub
Er r or Handl er:
i ndi vi dual code for error handling

End Sub

Chapter 2 The Language of StarOffice Basic 41

The On Error Goto ErrorHandl er line defines how StarOffice Basic proceeds in the event of
an error. The Got o Er r or Handl er ensures that StarOffice Basic exits the current program line
and then executes the Er r or Handl er : code.

The Resume Command

The Resurme Next command continues the program from the line that follows where the error
occurred in the program after the code in the error handler has been executed:

Err or Handl er:
' ... individual code for error handling

Resume Next

Use the Resune Pr oceed command to specify a jump point for continuing the program after error
handling:

Er r or Handl er :

i ndi vi dual code for error handling
Resune Proceed

Proceed:
' ... the programcontinues here after the error
To continue a program without an error message when an error occurs, use the following format:

Sub Test
On Error Resune Next

performtask during which an error may occur
End Sub

Usethe On Error Resune Next command with caution as its effect is global. For more
information, see Tips for Structured Error Handling.

Queries Regarding Error Information

In error handling, it is useful to have a description of the error and to know where and why the
error occurred:

= The Er r variable contains the number of errors that has occurred.
= The Error $ variable contains a description of the error.
= The Er| variable contains the line number where the error occurred.

The call

MsgBox "Error " & Err & ": " & Error$ & " (line : " & Erl &")"

42 StarOffice™ 7 Basic Programmer's Guide

shows how the error information can be displayed in a message window.

Whereas VBA summarizes the error messages in a statistical object called Er r, StarOffice Basic provides
the Err, Error$, and Er| variables.

The status information remains valid until the program encounters a Resurre or On Err or
command, whereupon the information is reset.

In VBA, the Err. Cl ear method of the Er r object resets the error status after an error occurs. In
StarOffice Basic, this is accomplished with the On Err or or Resune commands.

Tips for Structured Error Handling

Both the definition command, On Er r or, and the return command, Resune, are variants of the
Got o construct.

If you want to cleanly structure your code to prevent generating errors when you use this
construct, you should not use jump commands without monitoring them.

Care should be taken when you use the On Error Resume Next command as this dismisses all
open error messages.

The best solution is to use only one approach for error handling within a program - keep error
handling separate from the actual program code and do not jump back to the original code after
the error occurs.

The following is an example of an error handling procedure;
Sub Exanpl e

' Define error handler at the start of the function
On Error Goto ErrorHandl er

Here is the actual program code

' Deactivate error handling
On Error Goto O

' End of regular programinplenentation
Exit Sub

Start point of error handling
Er r or Handl er:

' Check whether error was expected
I f Err = ExpectedErrorNo Then
' ... Process error

El se
War ni ng of unexpected error
End | f
On Error Goto O ' Deactivate error handling
End Sub

Chapter 2 The Language of StarOffice Basic 43

This procedure begins with the definition of an error handler, followed by the actual program
code. At the end of the program code, the error handling is deactivated by the On Error Goto 0O
call and the procedure implementation is ended by the Exi t Sub command (not to be confused
with End Sub).

The example first checks if the error number corresponds to the expected number (as stored in the
imaginary Expect edEr r or No constant) and then handles the error accordingly. If another error
occurs, the system outputs a warning. It is important to check the error number so that
unanticipated errors can be detected.

The On Error Got o O call at the end of the code resets the status information of the error (the
error code in the Er r system variables) so that an error occurring at a later date can however be
clearly recognized.

44 StarOffice™ 7 Basic Programmer's Guide

CHAPTER 3

The Runtime Library of StarOffice Basic

The following sections present the central functions of the runtime library.

Conversion Functions

In many situations, circumstances arise in which a variable of one type has to be changed into a
variable of another type.

Implicit and Explicit Type Conversions
The easiest way to change a variable from one type to another is to use an assignment.

DmA As String
Dim B As | nteger

B = 101
A =B

In this example, variable Ais a string, and variable B is an integer. StarOffice Basic ensures that
variable B is converted to a string during assignment to variable A. This conversion is much more
elaborate than it appears: the integer B remains in the working memory in the form of a two-byte
long number. A, on the other hand, is a string, and the computer saves a one- or two-byte long
value for each character (each number). Therefore, before copying the content from Bto A, B has to
be converted into A's internal format.

Unlike most other programming languages, Basic performs type conversion automatically.
However, this may have fatal consequences. Upon closer inspection, the following code sequence

DimA As String
Dim B As | nteger
Dim C As | nteger

B=1
c=1
A=B+C

which at first glance seems straightforward, ultimately proves to be something of a trap. The Basic
interpreter first calculates the result of the addition process and then converts this into a string,
which, as its result, produces the string 2.

If, on the other hand, the Basic interpreter first converts the start values B and Cinto a string and
applies the plus operator to the result, it produces the string 11.

45

The same applies when using variant variables:

DmA
Dim B
DmC
B=1

c="1"
A=B+C

Since variant variables may contain both numbers and strings, it is unclear whether variable A is
assigned the number 2 or the string 11.

The error sources noted for implicit type conversions can only be avoided by careful programming;
for example, by not using the variant data type.

To avoid other errors resulting from implicit type conversions, StarOffice Basic offers a range of
conversion functions, which you can use to define when the data type of an operation should be
converted:

= CStr(Var) -converts any data type into a string.

= Clnt(Var) -converts any data types into an integer value.
= CLng(Var) - converts any data types into a long value.

= CSng(Var) - converts any data types into a single value.

= CDbl (Var) - converts any data types into a double value.

= CBool (Var) - converts any data types into a Boolean value.
= CDat e(Var) - converts any data types into a date value.

You can use these conversion functions to define how StarOffice Basic should perform these type
conversion operations:

DmA As String
Dim B As | nteger
Dim C As | nteger

B=1

c=1

A = CStr(B + Q ' B and C are added together first, then converted
(produces the nunber 2)

A =

Cstr(B) + Cstr(0O) ' Band C are converted into a string, then
' conbi ned (produces string "11")

During the first addition in the example, StarOffice Basic first adds the integer variables and then
converts the result into a chain of characters. Ais assigned the string 2. In the second instance, the
integer variables are first converted into two strings and then linked with one another by means of
the assignment. A is therefore assigned the string 11.

The numerical CSng and CDbl conversion functions also accept decimal numbers. The symbol
defined in the corresponding country-specific settings must be used as the decimal point symbol.

46 StarOffice™ 7 Basic Programmer's Guide

Conversely, the CSt r methods use the currently selected country-specific settings when formatting
numbers, dates and time details.

The Val function is different from the Csng, Cdbl and Cst r methods. It converts a string into a
number; however it always expects a period to be used as the decimal point symbol.

DimA As String
Dim B As Doubl e

A
B

no pon
Val (A) ' |s converted correctly regardl ess of the country-specific settings

Checking the Content of Variables
In some instances, the date cannot be converted:

DimA As String
Dim B As Date

A= "test"
B=A ' Creates error nessage

In the example shown, the assignment of the t est string to a date variable makes no sense, so the
Basic interpreter reports an error. The same applies when attempting to assign a string to a Boolean
variable:

DmA As String
Dim B As Bool ean

A= "test"
B=A ' Creates error nessage

Again, the basic interpreter reports an error.

These error messages can be avoided by checking the program before an assignment, in order to
establish whether the content of the variable to be assigned matches the type of the target variable.
StarOffice Basic provides the following test functions for this purpose:

= | sNumeri c(Val ue) —checks whether a value is a number.
= | sDat e(Val ue) —checks whether a value is a date.

= | sArray(Val ue) - checks whether a value is an array.

Chapter 3 The Runtime Library of StarOffice Basic 47

These functions are especially useful when querying user input. For example, you can check
whether a user has typed a valid number or date.

If IsNuneric(Userlnput) Then

Val i dl nput = User | nput
El se

Validlnput =0

MsgBox "Error mnessage."
End | f

In the previous example, if the User | nput variable contains a valid numerical value, then this is
assigned to the Val i dl nput variable. If User | nput does not contain a valid number,
Val i dl nput is assigned the value 0 and an error message is returned.

While test functions exist for checking numbers, date details and arrays in Basic, a corresponding
function for checking Boolean values does not exist. The functionality can, however, be imitated by
using the | sBool ean function:

Functi on | sBool ean(Val ue As Vari ant) As Bool ean
On Error Goto ErrorlsBool ean:
Di m Dunmry As Bool ean

Durmmy = Val ue

| sBool ean = True
On Error Goto O
Exit Sub

Err or | sBool ean:
| sBool ean = Fal se
On Error Goto O
End Functi on

The | sBool ean function defines an internal Durmy help variable of the Boolean type and tries to

assign this to the transferred value. If assignment is successful, the function returns Tr ue. If it fails,
a runtime error is produced, which intercepts the test function to return an error.

If a string in StarOffice Basic contains a non-numerical value and if this is assigned to a number, StarOffice
Basic does not produce an error message, but transfers the value 0 to the variable. This procedure differs
from VBA. There, an error is triggered and program implementation terminated if a corresponding
assignment is executed.

48 StarOffice™ 7 Basic Programmer's Guide

Strings

Working with Sets of Characters

When administering strings, StarOffice Basic uses the set of Unicode characters. The Asc and Chr
functions allow the Unicode value belonging to a character to be established and/or the
corresponding character to be found for a Unicode value. The following expressions assign the
various Unicode values to the code variable:

Code = Asc("A") ' Latin letter A (Unicode-val ue 65)
Code = Asc("€") ' Euro character (Unicode-val ue 8364)
Code = Asc("x") ' Cyrillic letter un(Unicode-val ue 1083)

Conversely, the expression
MyString = Chr(13)

ensures that the MySt r i ng string is initialized with the value of the number 13, which stands for a
hard line break.

The Chr command is often used in Basic languages to insert control characters in a string.
The assignment

MyString = Chr(9) + "Das ist ein Test" + Chr(13)

therefore ensures that the text is preceded by a tab character (Unicode-value 9) and that a hard line
break (Unicode-value 13) is added after the text.

Accessing Parts of a String

StarOffice Basic provides four functions that return partial strings:

= Left(MString, Length) —returnsthe first Lengt h characters of MyStri ng.
= Right(MString, Length) —returnsthe last Lengt h characters of MyStri ng.

= Md(MString, Start, Length) —returnsfirst Lengt h characters of MySt ri ng as of the
St art position.

= Len(MyString) - returns the number of characters in MySt ri ng.

Here are a few example calls for the named functions:

Dim MyString As String
Dim M/Result As String
Di m MyLen As | nteger

MyString = "This is a snall test"

M/Result = Left(M/String, 5) ' Provides the string "This "
M/Result = Right(M/String, 5) ' Provides the string " test"
M/Result = Md(M/String, 8, 5) ' Provides the string " a sni
M/Len = Len(M/Stri ng) ' Provides the value 21

Chapter 3 The Runtime Library of StarOffice Basic 49

Search and Replace
StarOffice Basic provides the | nSt r function for searching for a partial string within another string:
ResultString = InStr (SearchString, M/String)

The Sear chSt ri ng parameter specifies the string to be searched for within MySt ri ng. The
function returns a number that contains the position at which the Sear chSt r i ng first appears
within MySt ri ng. If you want to find other matches for the string, the function also provides the
opportunity to specify an optional start position from which StarOffice Basic begins the search. In this
case, the syntax of the function is:

Resul tString = InStr(StartPosition, SearchString, M/String)

In the previous examples, | nSt r ignores uppercase and lowercase characters. To change the
search so that | nSt r is case sensitive, add the parameter 0, as shown in the following example:

Resul tString = I nStr(SearchString, M/String, 0)

Using the previous functions for editing strings, programmers can search for and replace one
string in another string:

Function Repl ace(Source As String, Search As String, NewPart As String)
Dim Result As String
Dim StartPos As Long
Di m Current Pos As Long

Result = ""
StartPos =1
CurrentPos = 1
If Search = "" Then
Result = Source
El se

Do Wiile CurrentPos <> 0
CurrentPos = I nStr(StartPos, Source, Search)
If CurrentPos <> 0 Then
Result = Result + M d(Source, StartPos, _
Current Pos - Start Pos)
Result = Result + NewPart
Start Pos = CurrentPos + Len(Search)
El se
Result = Result + M d(Source, StartPos, Len(Source))
End If ' Position <> 0
Loop
End | f
Repl ace = Resul t
End Function

The function searches through the transferred Sear ch string in a loop by means of | nSt r in the
original term Sour ce. If it finds the search term, it takes the part before the expression and writes
it to the Resul t return buffer. It adds the new Par t section at the point of the search term

Sear ch. If no more matches are found for the search term, the function establishes the part of the

50 StarOffice™ 7 Basic Programmer's Guide

string still remaining and adds this to the return buffer. It returns the string produced in this way
as the result of the replacement process.

Since replacing parts of character sequences is one of the most frequently used functions, the M d
function in StarOffice Basic has been extended so that this task is performed automatically. The
following example

Dim MyString As String

MyString = "This was nmy text"
Md(M/String, 6, 3, "is")

replaces three characters with the string i s from the sixth position of the My St r i ng string.

Formatting Strings

The For mat function formats numbers as a string. To do this, the function expects a For mat
expression to be specified, which is then used as the template for formatting the numbers. Each
place holder within the template ensures that this item is formatted correspondingly in the output
value. The five most important place holders within a template are the zero (0), pound sign (#),
period (.), comma (,) and dollar sign ($) characters.

The zero character within the template ensures that a number is always placed at the corresponding
point. If a number is not provided, 0 is displayed in its place.

A period stands for the decimal point symbol defined by the operating system in the country-
specific settings.

The example below shows how the zero and period characters can define the digits after the decimal
point in an expression:

MyFor mat = "0. 00"

MyString = Format (-1579.8, M/For mat) ' Provides "-1579, 80"
MyString = Format(1579.8, MyFornmat) ' Provides "1579, 80"
MyString = Format (0.4, M/Format) ' Provides "0, 40"
MyString = Format (0.434, M/Fornat) ' Provides "0, 43"

In the same way, zeros can be added in front of a number to achieve the desired length:

MyFor mat = "0000. 00"

MyString = Format (-1579.8, M/For mat) ' Provides "-1579, 80"
MyString = Format (1579.8, M/For mat) ' Provides "1579, 80"
MyString = Format (0.4, M/Format) ' Provides "0000, 40"
MyString = Format (0.434, M/For mat) ' Provides "0000, 43"

A comma represents the character that the operating system uses for a thousands separator, and the
pound sign stands for a digit or place that is only displayed if it is required by the input string.

Chapter 3 The Runtime Library of StarOffice Basic 51

MyFormat = "#, ##0. 00"

M/String = Fornat (-1579.8, M/Fornat) ' Provides "-1.579, 80"
M/String = Fornat (1579.8, M/Fornat) ' Provides "1.579, 80"
MyString = Format (0.4, MyFormat) ' Provides "0, 40"
MyString = Format (0. 434, M/Format) ' Provides "0, 43"

In place of the dollar sign place holder, the For nat function displays the relevant currency symbol
defined by the system:

M/Format = "#, ##0. 00 $"

MyString = Format (-1579.8, M/Fornat) ' Provides "-1.579, 80 €"
MyString = Format (1579.8, M/Fornmat) ' Provides "1.579, 80 €"
M/String = Fornat (0.4, M/Fornat) ' Provides "0,40 €"
M/String = Fornat (0.434, M/Fornat) ' Provides "0, 43 €"

The format instructions used in VBA for formatting date and time details are not supported in StarOffice
Basic.

Date and Time

StarOffice Basic provides the Dat e data type, which saves the date and time details in binary
format.

Specification of Date and Time Details within the Program
Code

You can assign a date to a date variable through the assignment of a simple string:

Dim WDate As Date

MDate = "1.1.2002"

This assignment can function properly because StarOffice Basic automatically converts the date
value defined as a string into a date variable. This type of assignment, however, can cause errors,
date and time values are defined and displayed differently in different countries.

Since StarOffice Basic uses the country-specific settings of the operating system when converting a
string into a date value, the expression shown previously only functions correctly if the country-
specific settings match the string expression.

To avoid this problem, the Dat eSer i al function should be used to assign a fixed value to a date
variable:

Dim MyVar As Date

MyDate = DateSerial (2001, 1, 1)

52 StarOffice™ 7 Basic Programmer's Guide

The function parameter must be in the sequence: year, month, day. The function ensures that the
variable is actually assigned the correct value regardless of the country-specific settings

The Ti neSeri al function formats time details in the same way that the Dat eSer i al function
formats dates:

Dim MyVar As Date
MyDate = TinmeSerial (11, 23, 45)

Their parameters should be specified in the sequence: hours, minutes, seconds.

Extracting Date and Time Details
The following functions form the counterpart to the Dat eSeri al and Ti nmeSeri al functions:
= Day(MyDat e) —returns the day of the month from MyDat e
= Mont h(MyDat e) - returns the month from MyDat e
= Year (MyDat e) -returns the year from MyDat e
= Weekday(MyDat e) - returns the number of the weekday from MyDat e
= Hour (MyTi me) - returns the hours from MyTi e
= M nut e(MyTi ne) —returns the minutes from My Ti e
= Second(MyTi ne) -returns the seconds from MyTi e
These functions extract the date or time sections from a specified Dat e variable. The example
Dim MyDate As Date
Initialization of MyDate
I f Year(MyDate) = 2003 Then

Specified date is in the year 2003
End | f

checks whether the date saved in MyDat e is in the year 2003. In the same way, the example
Dim MyTi ne As Date
Initialization of MTinme
I f Hour (MyTine) >= 12 And Hour (MyTime) < 14 Then

Specified tinme is between 12 and 14 hours
End |f

checks whether My Ti e is between 12 and 14 hours.

Chapter 3 The Runtime Library of StarOffice Basic 53

The Weekday function returns the number of the weekday for the transferred date:

Dim MDate As Date
Di m MyWeekday As String

initialize MyDate

Sel ect Case WeekDay(MyDat e)

case 1

M/Weekday = " Sunday"
case 2

M/Weekday = " Monday"
case 3

M/Weekday = " Tuesday"
case 4

M/Weekday = "Wednesday"
case 5

M/Weekday = " Thur sday"
case 6

M/Weekday = "Friday"
case 7

M/Weekday = " Sat urday"
End Sel ect

Note: Sunday is considered the first day of the week.

Retrieving System Date and Time

The following functions are available in StarOffice Basic to retrieve the system time and system date:
= Dat e - returns the present date

= Ti me —returns the present time

= Now-returns the present point in time (date and time as combined value)

Files and directories

Working with files is one of the basic tasks of an application. The StarOffice API provides you with
a whole range of objects with which you can create, open and modify Office documents. These are
presented in detail in Chapter 4. Regardless of this, in some instances you will have to directly
access the file system, search through directories or edit text files. The runtime library from
StarOffice Basic provides several fundamental functions for these tasks.

Some DOS-specific file and directory functions are no longer provided in StarOffice 7, or their function

is only limited. For example, support for the ChDi r, ChDr i ve and Cur Di r functions is not provided.

Some DOS-specific properties are no longer used in functions that expect file properties as parameters (for
example, to differentiate from concealed files and system files). This change became necessary to ensure
the greatest possible level of platform independence for StarOffice.

54 StarOffice™ 7 Basic Programmer's Guide

Administering Files

Searching through Directories

The Di r function in StarOffice Basic is responsible for searching through directories for files and
sub-directories. When first requested, a string containing the path of the directories to be searched
must be assigned to Di r as its first parameter. The second parameter of Di r specifies the file or
directory to be searched for. StarOffice Basic returns the name of the first directory entry found. To
retrieve the next entry, the Di r function should be requested without parameters. If the Di r
function finds no more entries, it returns an empty string.

The following example shows how the Di r function can be used to request all files located in one
directory. The procedure saves the individual file names in the Al | Fi | es variable and then displays
this in a message box.

Sub ShowFi | es
Dim NextFile As String
DmAIIFiles As String

Al Files
NextFile = Dir("C\", 0)

Wiile NextFile <> ""
AllFiles = AllFiles & Chr(13) & NextFile
NextFile = Dir

Wénd

MsgBox Al |l Files
End Sub

The 0 used as the second parameter in the Di r function ensures that Di r only returns the names of
files and directories are ignored. The following parameters can be specified here:

a0 :returns normal files
» 16 : sub-directories

The following example is virtually the same as the preceding example, but the Di r function
transfers the value 16 as a parameter, which returns the sub-directories of a folder rather than the
file names.

Sub ShowDi rs
Dim NextDir As String
DmAIIDrs As String
AlDrs =""
NextDir = Dir("C\", 16)
Wiile NextDir <> ""
AllDirs = AlIDirs & Chr(13) & NextDr
NextDir = Dir
Wend
MsgBox AlIDirs
End Sub

Chapter 3 The Runtime Library of StarOffice Basic 55

When requested in StarOffice Basic, unlike the case with VBA, the Di r function using the parameter 16
only returns the sub-directories of a folder. (In VBA, the function also returns the names of the standard
files so that further checking is needed to retrieve the directories only).

The options provided in VBA for searching through directories specifically for files with the concealed,
system file, archived and volume name properties does not exist in StarOffice Basic because the
corresponding file system functions are not available on all operating systems.

The path specifications listed in Di r may use the * and ? place holders in both VBA and StarOffice Basic.
In StarOffice Basic, the * place holder may however only be the last character of a file name and/or file
extension, which is not the case in VBA.

Creating and Deleting Directories
StarOffice Basic provides the MkDi r function for creating directories.
MkDir ("C:\SubDir1")

This function creates directories and sub-directories. All directories needed within a hierarchy are
also created, if required. For example, if only the C: \ SubDi r 1 directory exists, then a call

MDir ("C:\SubDir1\SubbDir2\SubbDir3\")

creates both the C: \ SubDi r 1\ SubDi r 2 directory and the C: \ SubDi r 1\ SubDi r 2\ SubDi r 3
directory.

The RrDi r function deletes directories.
RDir ("C:\SubDir1\ SubDir2\ SubbDir3\")

If the directory contains sub-directories or files, these are also deleted. You should therefore be
careful when using RDi r .

In VBA, the MkDi r and RnDi r functions only relate to the current directory. In StarOffice Basic on the
other hand, MkDi r and RnDi r can be used to create or delete levels of directories.

In VBA, RnDi r produces an error message if a directory contains a file. In StarOffice Basic, the directory
and all its files are deleted.

56 StarOffice™ 7 Basic Programmer's Guide

Copying, Renaming, Deleting and Checking the Existence of Files

The call
Fi | eCopy(Source, Destination)

creates a copy of the Sour ce file under the name of Dest i nat i on.

With the help of the function
Nane O dNane As NewNane

you can rename the A dNane file with NewNane. The As keyword syntax, and the fact that a
comma is not used, goes back to the roots of the Basic language.

The call
Ki Il (Fil enane)

deletes the Fi | enarmre file. If you want to delete directory (including its files)use the RDi r
function.

The Fi | eExi st s function can be used to check whether a file exists:

If FileExists(Filenanme) Then
MsgBox "“file exists."
End | f

Reading and Changing File Properties

When working with files, it is sometimes important to be able to establish the file properties, the
time the file was last changed and the length of the file.

The call

Dim Attr As Integer
Attr = CGetAttr(Fil enane)

returns some properties about a file. The return value is provided as a bit mask in which the
following values are possible:

= 1:read-only file

= 16 : name of a directory

Chapter 3 The Runtime Library of StarOffice Basic 57

The example

Di m Fi | eMask As | nteger
Dim Fil eDescription As String

FileMask = GetAttr("test.txt")
If (FilemMask AND 1) > 0 Then
Fi | eDescription = FileDescription & " read-only "

End IF

If (FileMask AND 16) > O Then
Fi |l eDescription = FileDescription & " directory "

End | F
If FileDescription ="" Then

Fi | eDescription = " nornal "
End IF

MsgBox Fi | eDescription

determines the bit mask of the t est . t xt file and checks whether this is read-only whether it is a
directory. If neither of these apply, Fi | eDescri pti on is assigned the "normal” string.

The flags used in VBA for querying the concealed, system file, archived and volume name file properties
are not supported in StarOffice Basic because these are Windows-specific and are not or are only partially
available on other operating systems.

The Set At t r function permits the properties of a file to be changed. The call
SetAttr("test.txt", 1)

can therefore be used to provide a file with read-only status. An existing read-only status can be
deleted with the following call:

Set Attr("test.txt", 0)

The date and time of the last amendment to a file are provided by the Fi | eDat eTi ne function.
The date is formatted here in accordance with the country-specific settings used on the system.

Fil eDateTime("test.txt") ' Provides date and tine of the last file anendnent.
The Fi | eLen function determines the length of a file in bytes (as long integer value).

FileLen("test.txt") ' Provides the length of the file in bytes

58 StarOffice™ 7 Basic Programmer's Guide

Writing and Reading Text Files

StarOffice Basic provides a whole range of methods for reading and writing files. The following
explanations relate to working with text files (not text documents).

Writing Text Files

Before a text file is accessed, it must first be opened. To do this, a free file handle is needed, which
clearly identifies the file for subsequent file access.

The Fr eeFi | e function is used to create a free file handle. The handle is used as a parameter for
the Open instruction, which opens the file. To open a file so that it can be specified as a text file, the
Open call is;

Open Fil enane For CQutput As #FileNo

Fi | ename is a string containing the name of the file. Fi | eNo is the handle created by the
Fr eeFi | e function.

Once the file is opened, the Pr i nt instruction can be described line by line:
Print #FileNo, "This is a test line."

Fi | eNo also stands for the file handle here. The second parameter specifies the text that is to be
saved as a line of the text file.

Once the writing process has been completed, the file must be closed using a Cl ose call:
Cl ose #Fil eNo

Again here, the file handle should be specified.

The following example shows how a text file is opened, described and closed:
Dim Fil eNo As | nteger

Dim CurrentLine As String
Dim Fil ename As String

Fil ename = "c:\data.txt" ' Define file nanme

FileNo = Freefile ' Establish free file handl e
Open Fil enanme For CQutput As #Fil eNo ' Open file (witing node)
Print #FileNo, "This is a line of text" ' Save line

Print #FileNo, "This is another |ine of text" ' Save line

Cl ose #Fil eNo ' Close file

Reading Text Files

Text files are read in the same way that they are written. The Open instruction used to open the file
contains the For | nput expression in place of the For Qut put expression and, rather than the
Pri nt command for writing data, the Li ne | nput instruction should be used to read the data.

Chapter 3 The Runtime Library of StarOffice Basic 59

Finally, when calling up a text file, the instruction
eof (Fi | eNo)
is used to check whether the end of the file has been reached.
The following example shows how a text file can be read in:
Dim Fil eNo As |nteger
Dim CurrentLine As String
DmFile As String

Dim Msg as String

Define fil enane
Filenane = "c:\data.txt"

Establish free file handl e
FileNo = Freefile

' Open file (reading node)
Open Fil enane For |nput As FileNo

Check whether file end has been reached
Do Wil e not eof (Fil eNo)

' Read line
Li ne | nput #FileNo, CurrentlLine
If CurrentLine <>"" then
Msg = Msg & CurrentlLine & Chr(13)
end if

Loop

' Cose file
Cl ose #Fi |l eNo

Msgbox Msg

The individual lines are retrieved ina Do Wi | e loop, saved in the Msg variable, and displayed at
the end in a message box.

Message and Input Boxes

StarOffice Basic provides the MsgBox and | nput Box functions for basic user communication.

Displaying Messages

MsgBox displays a basic information box, which can have one or more buttons. In its simplest
variant

MsgBox "This is a piece of information!"

the MsgBox only contains text and an OK button.

60 StarOffice™ 7 Basic Programmer's Guide

The appearance of the information box can be changed using a parameter. The parameter provides
the option of adding additional buttons, defining the pre-assigned button, and adding an
information symbol. The values for selecting the buttons are:

= 0-OK button

= 1-OKand Cancel button

= 2 - Cancel and Retry buttons

= 3-Yes, No and Cancel buttons
= 4-Yesand No buttons

= 5-—Retry and Cancel buttons

To set a button as the default button, add one of the following values to the parameter value from
the list of button selections. For example, to create Yes, No and Cancel buttons (value 3) where
Cancel is the default (value 512), the parameter value is 3 + 512 = 515.

= 0 -First button is default value
s 256 — Second button is default value
= 512 - Third button is default value

Finally, the following information symbols are available and can also be displayed by adding the
relevant parameter values:

= 16— Stop sign

s 32— Question mark

= 48 - Exclamation point
= 64-Tipicon

The call

MsgBox "Do you want to continue?", 292

displays an information box with the Yes and No buttons (value 4), of which the second button
(No) is set as the default value (value 256) and which also receives a question mark (value 32),
4+256+32=292

If an information box contains several buttons, then a return value should be queried to determine
which button has been pressed. The following return values are available in this instance:

= 1-0k

= 2 - Cancel
= 4-—Retry
= 5-Ignore
= 6-Yes

= 7-No

Chapter 3 The Runtime Library of StarOffice Basic 61

In the previous example, checking the return values could be as follows:
If MsgBox ("Do you want to continue?", 292) = 6 Then
Yes button pressed
El se
No button pressed
End | F

In addition to the information text and the parameter for arranging the information box, MsgBox also
permits a third parameter, which defines the text for the box title:

MsgBox "Do you want to continue?", 292, "Fenstertitel"

If no box title is specified, the default is “soffice”.

Input Box For Querying Simple Strings

The | nput Box function queries simple strings from the user. It is therefore a simple alternative to
configuring dialogs. | nput Box receives three standard parameters;

= an information text,
= abox title,

= adefault value which can be added within the input area.

I nput Val = I nput Box("Pl ease enter value:", "Test", "default val ue")

As a return value, the | nput Box provides the string typed by the user.

Other functions

Beep

The Beep function causes the system to play a sound that can be used to warn the user of an
incorrect action. Beep does not have any parameters:

Beep ' creates an infornative tone

Shell

External programs can be started using the Shel | function.
Shel | (Pat hnane, W ndowstyl e, Param

Pat hname defines the path of the program to be executed. W ndowst y| e defines the window in
which the program is started. The following values are possible:

= 0-The program receives the focus and is started in a concealed window.
= 1-The program receives the focus and is started in a normal-sized window.

= 2 -The program receives the focus and is started in a minimized window.

62 StarOffice™ 7 Basic Programmer's Guide

= 3 -The program receives the focus and is started in a maximized window.

= 4 -The program is started in a normal-sized window, without receiving the focus.

= 6-—The program is started in a minimized window, the focus remains in the current window.
= 10-The program is started in full screen mode.

The third parameter, Par am permits command line parameters to be transferred to the program
to be started.

Walit

The Wai t function terminates program execution for a specified time. The waiting period is
specified in milliseconds. The command

Wai t 2000

specifies an interrupt of 2 seconds (2000 milliseconds).

Environ

The Envi r on function returns the environmental variables of the operating system. Depending on
the system and configuration, various types of data are saved here. The call

Di m TenpDi r
TenpDi r=Environ (" TEMP")

determines the environment variables of temporary directory of the operating system.

Chapter 3 The Runtime Library of StarOffice Basic 63

64 StarOffice™ 7 Basic Programmer's Guide

cHAPTER 4

Introduction to the StarOffice API

The StarOffice APl is a universal programming interface for access to StarOffice. You can use the
StarOffice API to create, open, modify and print out StarOffice documents. It provides the option of
extending the functional scope of StarOffice through personal macros and allows personal dialogs to be
written.

The StarOffice API may not only be used with StarOffice Basic, but also with other programming
languages such as Java and C++. A technique called Universal Network Objects (UNO) which
provides an interface to various programming languages makes this possible.

This chapter centers on how StarOffice can be used in StarOffice Basic with the aid of UNO. It
describes the main concepts of UNO from the standpoint of a StarOffice Basic programmer. Details
on how to work with the various parts of the StarOffice API can be found in the following chapters.

Universal Network Objects (UNO)

StarOffice provides a programming interface in the form of the Universal Network Objects (UNO).
This is an object-oriented programming interface which StarOffice sub-divides into various objects
which for their part ensure program-controlled access to the Office package.

Since StarOffice Basic is a procedural programming language, several linguistic constructs have
had to be added to it which enable the use of UNO.

To use a Universal Network Obiject in StarOffice Basic, you will need a variable declaration for the
associated object. The declaration is made using the Di minstruction (see Chapter 2). The Obj ect
type designation should be used to declare an object variable:

Dim Cbj As bject
The call declares an object variable named bj .
The object variable created must then be initialized so that it can be used. This can be done using
the cr eat eUnoSer vi ce function:

Obj = createUnoService("com sun. star.frame. Desktop")

This call assigns to the Obj variable a reference to the newly created object.

com sun. st ar. frame. Deskt op resembles an object type; however in UNO terminology it is
called a “service” rather than a type. In accordance with UNO philosophy, an Qbj is described as a
reference to an object which supports the com sun. st ar. f r ame. Deskt op service. The “service”

65

term used in StarOffice Basic therefore corresponds to the type and class terms used in other
programming languages.

There is, however, one main difference: a Universal Network Object may support several services
at the same time. Some UNO services in turn support other services so that, through one object,
you are provided with a whole range of services. For example, that the aforementioned object,
which is based on the com sun. st ar . f r ame. Deskt op service, can also include other services
for loading documents and for ending the program.

Whereas the structure of an object in VBA is defined by the class to which it belongs, in StarOffice Basic
the structure is defined through the services which it supports. A VBA object is always assigned to
precisely one single class. A StarOffice Basic object can, however, support several services.

Properties and Methods

An object in StarOffice Basic provides a range of properties and methods which can be called by
means of the object.

Properties

Properties are like the properties of an object; for example, Fi | enane and Ti t | e for a Docunent
object.

The properties are set by means of a simple assignment:

Docunent . Title = "StarOffice 7 Basic Programmer's Cuide"
Docunent . Fi | enane = " prognan. sxv"

A property, just like a normal variable, has a type that defines which values it can record.
The preceding Fi | enane and Ti t | e properties are of the string type.

Real Properties and Imitated Properties

Most of the properties of an object in StarOffice Basic are defined as such in the UNO description of
the service. In addition to these "real" properties, there are also properties in StarOffice Basic which
consist of two methods at the UNO level. One of these is used to query the value of the property
and the other is issued to set it (get and set methods). The property has been virtually imitated
from two methods. Character objects in UNO, for example, provide the get Posi ti on and

set Posi ti on methods through which the associated key point can be called up and changed. The
StarOffice Basic programmer can access the values through the Posi t i on property. Regardless of
this, the original methods are also available (in our example, get Posi t i on and set Posi ti on).

66 StarOffice™ 7 Basic Programmer's Guide

Methods

Methods can be understood as functions that relate directly to an object and through which this
object is called. The preceding Docunent object could, for example, provide a Save method,
which can be called as follows:

Docunent . Save()

Methods, just like functions, may contain parameters and return values. The syntax of such method
calls is oriented towards classic functions. The call

Ok = Docunent. Save(True)

also specifies the Tr ue parameter for the document object when requesting the Save method.
Once the method has been completed, Save saves a return value in the Gk variable.

Module, Services and Interfaces

StarOffice provides hundreds of services. To provide an overview of these services, they have been
combined into modules. The modules are of no other functional importance for StarOffice Basic
programmers. When specifying a service name, it is only the module name which is of any
importance because this must be also listed in the name. The complete name of a service consists of
the com sun. st ar expression, which specifies that it is a StarOffice service, followed by the
module name, such as f r ane, and finally the actual service name, such as Deskt op. The
complete name in the named example would be:

com sun. st ar. franme. Deskt op

In addition to the module and service terms, UNO introduces the term “interface”. While this term
may be familiar to Java programmers, it is not used in Basic.

An interface combines several methods. In the strictest sense of the word, a service in UNO does
not support methods, but rather interfaces, which in turn provide different methods. In other
words, the methods are assigned (as combinations) to the service in interfaces. This detail may be
of interest in particular to Java- or C++ programmers, since in these languages, the interface is
needed to request a method. In StarOffice Basic, this is irrelevant. Here, the methods are called
directly by means of the relevant object.

For an understanding of the API, it is, however, useful to have the assignment of methods to
various interfaces handy, since many interfaces are used in the different services. If you are
familiar with an interface, then you can transfer your knowledge from one service to another.

Some central interfaces are used so frequently that they are shown again at the end of this chapter,
triggered by different services.

Chapter 4 Introduction to the StarOffice APl 67

Tools for Working with UNO

The question remains as to which objects — or services if we are going to remain with UNO
terminology — support which properties, methods and interfaces and how these can be determined.
In addition to this guide, you can get more information about objects from the following sources:
the support sSer vi ce method, the debug methods as well as the Developer's Guide, and the API
reference.

The supportsService Method

A number of UNO objects support the support sSer vi ce method, with which you can establish
whether an object supports a particular service. The call

Ok = Text El enent . supportsServi ce("com sun. star.text.Paragraph")

for example, determines whether the Text El enent object supports the
com sun. star.text. Paragraph service.

Debug Properties

Every UNO object in StarOffice Basic knows what properties, methods and interfaces it already
contains. It provides properties that return these in the form of a list. The corresponding properties
are:

DBG properti es - returns a string containing all properties of an object
DBG_rret hods - returns a string containing all methods of an object
DBG supportet | nterfaces - returns a string containing all interfaces which support an object.

The following program code shows how DBG pr operti es and DBG _net hods can be used in
real-life applications. It first creates the com sun. st ar . f r ame. Deskt op service and then
displays the supported properties and methods in message boxes.

Dim OGbj As Object
Obj = createUnoServi ce("com sun. star.frame. Deskt op")

MsgBox Obj . DBG Propierties
MsgBox Obj . DBG et hods

When using DBG _pr operti es, note that the function returns all properties that one particular
service can theoretically support. No assurances are, however, provided for whether these can also
be used by the object in question. Before calling up properties, you must therefore use the

| sEnpt y function to check whether this is actually available.

68 StarOffice™ 7 Basic Programmer's Guide

API| Reference

More information about the available services, and their interfaces, methods and properties can be
found in the API reference for the StarOffice API. This can be found at www.openoffice.org:

http://api.openoffice.org/ common/ref/conl sun/star/nodul e-i x. ht m

An Overview of a Few Central Interfaces

Some interfaces of StarOffice can be found in many parts of the StarOffice API. They define sets of
methods for abstract tasks which can be applied to various problems. Here, you will find an
overview of the most common of these interfaces.

The origin of the objects is explained at a later point in this guide. At this point, only some of the
abstract aspects of objects, for which the StarOffice API provides some central interfaces, are
discussed.

Creating Context-Dependent Objects

The StarOffice API provides two options for creating objects. One can be found in the

cr eat eUnoSer vi ce function mentioned at the start of this chapter. cr eat eUnoSer vi ce
creates an object which can be used universally. Such objects and services are also known as
context-independent services.

In addition to context-independent services, there are also context-dependent services whose objects
are only useful when used in conjunction with another object. A drawing object for a spreadsheet
document, for example, can therefore only exist in conjunction with this one document.

com.sun.star.lang.XMultiServiceFactory Interface

Context-dependent objects are usually created by means of an object method, on which the object
depends. The cr eat el nst ance method, which is defined in the XMul ti Ser vi ceFact ory
interface, is used in particular in the document objects.

The aforementioned drawing object can, for example,e be created as follows using a spreadsheet
object:

Di m Rect angl eShape As Obj ect

Rect angl eShape = _
Spr eadsheet . creat el nst ance("com sun. st ar. drawi ng. Rect angl eShape")

A paragraph template in a text document is created in the same way:

Dim Styl e as Obj ect
Styl e = Textdocunent. createl nstance("com sun. star. styl e. ParagraphStyl e")

Chapter 4 Introduction to the StarOffice API 69

Named Access to Subordinate Objects

The XNaneAccess and XNarmeCont ai ner interfaces are used in objects that contain subordinate
objects, which can be addressed using a natural language name.

While XNamedAccess permits access to the individual objects, XNaneCont ai ner takes on the
insertion, modification and deletion of elements.

com.sun.star.container.XNameAccess Interface

An example of the use of XNarmeAccess is provided by the sheet object of a spreadsheet. It
combines all the pages within the spreadsheet. The individual pages are accessed using the
get ByNane method from XNaneAccess:

Di m Sheets As Obj ect
Di m Sheet As Obj ect

Sheets = Spreadsheet. Sheets
Sheet = Sheets. get ByNanme(" Sheet 1")

The get El enent Narmres method provides an overview of the names of all elements. As a result, it
returns a data field containing the names. The following example shows how all element names of
a spreadsheet can thereby be determined and displayed in a loop:

Di m Sheets As Obj ect
Di m Sheet Nanes
Dim | As |nteger

Sheets = Spreadsheet. Sheets
Sheet Nanes = Sheet s. get El enent Nanes

For | =LBound(Sheet Nanes) To UBound(Sheet Nanes)
MsgBox Sheet Names(1)
Next |

The hasByNanme method of the XNanmeAccess interface reveals whether a subordinate object with
a particular name exists within the basic object. The following example therefore displays a
message that informs the user whether the Spr eadsheet object contains a page of the name
Sheet 1.

Di m Sheets As Obj ect

Sheet s = Spreadsheet. Sheets
I f Sheets. HasByName(" Sheet 1") Then
MsgBox " Sheetl1l avail abl e"
El se
MsgBox " Sheet1l not avail abl e"
End | f

70 StarOffice™ 7 Basic Programmer's Guide

com.sun.star.container.XNameContainer Interface

The XNameCont ai ner interface takes on the insertion, deletion and modification of subordinate
elements in a basic object. The functions responsible are i nser t ByNane, r enoveByNane and
r epl aceByNane.

The following is a practical example of this. It calls a text document, which contains a
St yl eFami | i es object and uses this to in turn make the paragraph templates (ParagraphStyles)
of the document available.

Dim Styl eFanmilies As Objects
Di m Par agr aphStyl es As Obj ects
Di m NewStyl e As Obj ect

Styl eFam | ies = Textdoc. Styl eFam |ies
Par agraphStyl es = Styl eFam | i es. get ByName(" Par agr aphSt yl es")

Par agraphStyl es. i nsert ByNanme(" NewStyl e", NewStyl e)
Par agraphSt yl es. repl aceByName(" Changi ngStyl e", NewStyl e)
Par agr aphSt yl es. renbveByNane(" d dStyl e")

The i nsert ByNane line inserts the NewSt y| e style under the name of the same name in the

Par agr aphSt yl es object. The r epl aceByNane line changes the object behind Changi ngStyl e
into NewSt yl e. Finally, the r enroveByNane call removes the object behind A dSt yl e from

Par agr aphSt yl es.

Index-Based Access to Subordinate Objects

The XI ndexAccess and Xl ndexCont ai ner interfaces are used in objects which contain
subordinate objects and which can be addressed using an index.

XI ndexAccess provides the methods for accessing individual objects.
XI ndexCont ai ner provides methods for inserting and removing elements.

com.sun.star.container.XIndexAccess Interface

XI ndexAccess provides the get Byl ndex and get Count methods for calling the subordinate
objects. get Byl ndex provides an object with a particular index. get Count returns how many
objects are available.

Di m Sheets As Obj ect
Di m Sheet As Obj ect
Dim | As |nteger

Sheets = Spreadsheet. Sheets
For | = 0 to Sheets.getCount() - 1
Sheet = Sheets. get Byl ndex(1)

Edi ti ng sheet
Next |

Chapter 4 Introduction to the StarOffice API 71

The example shows a loop that runs through all sheet elements one after another and saves a
reference to each in the Sheet object variable. When working with the indexes, note that

get Count returns the number of elements. The elements in get Byl ndex however are numbered
beginning with 0. The counting variable of the loop therefore runs from 0 to get Count () - 1.

com.sun.star.container.XIndexContainer Interface

The Xl ndexCont ai ner interface provides the i nsert Byl ndex and r emoveByl ndex functions.
The parameters are structured in the same way as the corresponding functions in XNanmeCont ai ner .

Iterative Access to Subordinate Objects

In some instances, an object may contain a list of subordinate objects that cannot be addressed by
either a name or an index. In these situations, the XEnuner at i on and Xenuner ati onAccess
interfaces are appropriate. They provide a mechanism through which all subordinate elements of
an objects can be passed, step by step, without having to use direct addressing.

com.sun.star.container.XEnumeration and XenumerationAccess Interfaces

The basic object must provide the XEnuner at i onAccess interface, which contains only a

cr eat eEnuner at i on method. This returns an auxiliary object, which in turn provides the
XEnuner at i on interface with the hasMor eEl enent s and next El ement methods. Through
these, you then have access to the subordinate objects.

The following example steps through all the paragraphs of a text:

Di m Par agr aphEnuner ati on As Obj ect
Di m Par agraph As bj ect

Par agr aphEnuner ati on = Text doc. Text . cr eat eEnuner ati on

Wi | e Paragr aphEnuner ati on. hasMor eEl enent s()
Par agr aph = Par agr aphEl enent s. next El enent ()
Wénd

The example first creates a Par agr aphEnurmer at i on auxiliary object. This gradually returns the
individual paragraphs of the text in a loop. The loop is terminated as soon as the

hasMor eEl enent s method returns the Fal se value, signaling that the end of the text has been
reached.

72 StarOffice™ 7 Basic Programmer's Guide

CHAPTER 5

Working with StarOffice Documents

The StarOffice API has been structured so that as many of its parts as possible can be used
universally for different tasks. This includes the interfaces and services for creating, opening,
saving, converting, and printing documents and for template administration. Since these function
areas are available in all types of documents, they are explained first in this chapter.

The StarDesktop

When working with documents, there are two services which are used most frequently:

= Thecom sun. star. frame. Deskt op service, which is similar to the core service of
StarOffice. It provides the functions for the frame object of StarOffice, under which all
document windows are classified. Documents can also be created, opened and imported using
this service.

= The basic functionality for the individual document objects is provided by the
com sun. st ar. docunent .. O fi ceDocunent service. This provides the methods for saving,
exporting and printing documents.

The com sun. st ar. f rame. Deskt op service opens automatically when StarOffice is started. To
do this, StarOffice creates an object which can be reached by means of the global name
St ar Deskt op.

The most important interface of the St ar Deskt op is

com sun. st ar. frame. XConponent Loader . This basically covers the

I oadConponent Fr omJRL method, which is responsible for creating, importing and opening
documents.

The name of the St ar Deskt op object dates back to StarOffice 5, in which all document windows were
embedded in one common application called StarDesktop. In the present version of StarOffice, a visible
StarDesktop is no longer used. The name StarDesktop was, however, retained for the frame object of
StarOffice because it clearly indicates that this is a basic object for the entire application.

The St ar Deskt op object assumes the position of successor to the Appl i cati on object of StarOffice 5
which previously applied as a root object. Unlike the old Appl i cati on object however it is primarily
responsible for opening new documents. The functions resident in the old Appl i cati on object for
controlling the on-screen depiction of StarOffice (for example, Ful | Scr een, Functi onBar Vi si bl e,
Hei ght , W dt h, Top, Vi si bl e) are no longer used.

73

Whereas the active document in Word is accessed through Appl i cati on. Act i veDocunent and in
Excel through Appl i cati on. Act i veWbr kbook, in StarOffice, the St ar Deskt op is responsible for this
task. The active document object is accessed in StarOffice 7 through the

St ar Deskt op. Cur r ent Conponent property.

Basic Information about Documents in StarOffice

When working with StarOffice documents, it is useful to deal with some of the basic issues of
document administration in StarOffice. This includes the way in which file names are structured
for StarOffice documents, as well as the format in which files are saved.

File Names in URL Notation

Since StarOffice is a platform-independent application, it uses URL notation (which is independent
of any operating system), as defined in the Internet Standard RFC 1738 for file names. Standard file
names using this system begin with the prefix

file:///

followed by the local path. If the file name contains sub-directories, then these are separated by a
single forward slash., not with a backslash usually used under Windows. The following path
references the t est . sxwfile in the doc directory onthe C dri ve:.

file:///C:/doc/test.sxw

To covert local file names into an URL, StarOffice provides the Convert ToUr I function.
To convert an URL into a local file name, StarOffice provides the Convert Fr onr | function:

MsgBox Convert ToUrl ("C:\doc\test.sxw')
' supplies file:///C: /doc/test.sxw

MsgBox Convert Fromrl ("file:///C./doc/test.sxw')
suppl i es (under Wndows) c:\doc\test.sxw

The example converts a local file name into a URL and displays it in a message box. It then
converts a URL into a local file name and also displays this.

The Internet Standard RFC 1738, upon which this is based, permits use of the 0- 9, a-z, and A-Z
characters. All other characters are inserted as escape coding in the URLs. To do this, they are
converted into their hexadecimal value in the 1ISO 8859-1 (ISO-Latin) set of characters and are
preceded by a percent sign. A space in a local file name therefore, for example, becomes a %20 in
the URL.

XML File Format

Since Version 6.0, StarOffice provides an XML-based file format. Through the use of XML, the user
has the option of also opening and editing files in other programs.

74 StarOffice™ 7 Basic Programmer's Guide

Compression of Files

Since XML is based on standard text files, the resultant files are usually very large. StarOffice
therefore compresses the files and saves them as a ZIP file. By means of a st or eAsURL method
option, the user can save the original XML files directly. See storeAsURL Method Options on page
79.

Creating, Opening and Importing Documents
Documents are opened, imported and created using the method

St ar Deskt op. | oadConponent FronURL(URL, Frane, _
Sear chFl ags, Fil eProperties)

The first parameter of | oadConponent Fr omJRL specifies the URL of the associated file.

As the second parameter, | oadConponent Fr omUJRL expects a name for the frame object of the
window that StarOffice creates internally for its administration. The predefined _bl ank name is
usually specified here, and this ensures that StarOffice creates a new window. Alternatively,

_hi dden can also be specified, and this ensures that the corresponding document is loaded but
remains invisible.

Using these parameters, the user can open a StarOffice document, since place holders (dummy
values) can be assigned to the last two parameters:

Di m Doc As Obj ect
DmUl As String
Di m Dummy()

Ur | "file:///C /test.sxw'

Doc

St ar Deskt op. | oadConponent FromJRL(Url, "_bl ank", 0, Dummy())

The preceding call opens the text.sxw file and displays this in a new window.

Any number of documents can be opened in this way in StarOffice Basic and then edited using the
returned document objects.

St ar Deskt op. | oadConponent Fr omJRL supersedes the Docunent s. Add and Docunent s. Open
methods from the old StarOffice API.

Replacing the Content of the Document Window

The named _bl ank and _hi dden values for the Fr arme parameter ensure that StarOffice creates a
new window for every call from | oadConponent Fr omJRL. In some situations, it is useful to
replace the content of an existing window. In this case, the frame object of the window should
contain an explicit name. Note that this name must not begin with an underscore. Furthermore, the
Sear chFl ags parameter must be set so that the corresponding framework is created, if it does not
already exist. The corresponding constant for Sear chFl ags is:

Sear chFl ags = com sun. st ar. frame. FraneSear chFl ag. CREATE + _
com sun. star. frane. FraneSear chFl ag. ALL

Chapter 5 Working with StarOffice Documents 75

The following example shows how the content of an opened window can be replaced with the help
of the frame parameter and Sear chFl ags:

Di m Doc As Obj ect

D m Dumy ()

Dm Wl As String

Di m Sear chFl ags As Long

Sear chFl ags = com sun. st ar. franme. FrameSear chFl ag. CREATE + _
com sun. star. frame. FrameSear chFl ag. ALL

Url "file:///C /test.sxw'
Doc = St ar Deskt op. | oadConponent FromJRL(Url, "M/Frane", _
Sear chFl ags, Dummy)

MsgBox "Press OK to display the second docunent."

Url
Doc

"file:///C /test2. sxw'
St ar Deskt op. | oadConponent FronJRL(Url, " M/Franme", _
Sear chFl ags, Dunmy)

The example first opens the t est . sxwfile in a new window with the frame name of MyFr ane.
Once the message box has been confirmed, it replaces the content of the window with the

t

est 2. sxwfile.

loadComponentFromURL Method Options

The fourth parameter of the | oadConponent Fr omURL function is a Pr opert yVal ue data field.
which provides StarOffice with various options for opening and creating documents. The data field
must provide a Pr oper t yVal ue structure for each option in which the name of the option is
saved as a string as well as the associated value.

oadConponent Fr onJRL supports the following options:

AsTenpl at e (Bool ean) - if true, loads a new, untitled document from the given URL. If is
false, template files are loaded for editing.

Char acterSet (String) —defineswhich set of characters a document is based on.

FilterName (String) - specifies a special filter for the | oadConponent Fr onJRL function.
The filter names available are defined in the \ shar e\ confi g\ regi stry\i nst ance\ or g\
openof fi ce\ of fi ce\ TypeDet ecti on. xn file.

FilterOptions (String) —defines additional options for filters.

JumpMar k (String) —once adocument has been opened, jumps to the position defined in
JumpMark.

Password (String) - transfers a password for a protected file.

ReadOnl y (Bool ean) - loads a read-only document.

The following example shows how a text file separated by a comma in StarOffice Calc can be
opened using the Fi | t er Nane option.

76 StarOffice™ 7 Basic Programmer's Guide

Di m Doc As Obj ect
Dim Fi |l eProperties(0) As New com sun. st ar. beans. PropertyVal ue
DmUl As String

Ul = "file:///C /csv.doc"

Fi |l eProperties(0). Name = "FilterName"
Fil eProperties(0).Value ="scalc: Text - txt - csv (StarOfice Calc)"

Doc = St ar Deskt op. | oadConponent FromURL(Url, "_blank", 0, FileProperties())

The Fi | eProperti es data field covers precisely one value because it records one option.

The Fi | t er name property defines whether StarOffice uses a StarOffice Calc text filter to open
files.

Creating New Documents

StarOffice automatically creates a new document if the document specified in the URL is a
template.

Alternatively, if only an empty document without any adaptation is needed, a
privat e: f act or y-URL can be specified:

Di m Dunmy ()
Dm Ul As String
Di m Doc As (bj ect

Url
Doc

"private:factory/switer"
St ar Deskt op. | oadConponent FromJRL(Url, "_bl ank", 0, Dummy())

The call creates an empty StarOffice writer document.

Document Obijects

The | oadConponent Fr omJRL function introduced in the previous section returns a document
object. This supports the com sun. st ar. docunent . O f i ceDocunent service, which in turn
provides two central interfaces:

= thecom sun. star.frane. XSt or abl e interface, which is responsible for saving documents
and

= thecom sun. star.vi ew. XPri nt abl e interface, which contains the methods for printing
documents.

When changing over to StarOffice 7, you will find that the functional scope of the document objects has
remained the same for the most part. The document objects, for example, still provide methods for saving
and printing documents. The names and parameters of the methods have, however, changed.

Saving and Exporting Documents

StarOffice documents are saved directly through the document object. The st or e method of the
com sun. star. frame. XSt or abl e interface is available for this purpose:

Chapter 5 Working with StarOffice Documents 77

Doc. store()

This call functions provided that the document has already been assigned a memory space. This is
not the case for new documents. In this instance, the st or eAsURL method is used. This method is

also defined in com sun. st ar. f ranme. XSt or abl e and can be used to define the location of the
document:

Dim URL As String
Di m Dummy()

Ul = "file:///C/test3.sxw'

Doc. st or eAsURL(URL, Dummy())

In addition to the preceding methods, com sun. st ar . f rane. XSt or abl e also provides
some help methods which are useful when saving documents. These are:

= haslLocation() - specifies whether the document has already been assigned a URL.
= i sReadonl y() - specifies whether a document has read-only protection.
= ishMdified() -specifies whether a document has been modified since it was last saved.

The code for saving a document can be extended by these options so that the document is only
saved if the object has actually been modified and the file name is only queried if it is actually
needed:

If (Doc.ishModified) Then
I f (Doc. hasLocation And (Not Doc.isReadOnly)) Then
Doc. store()
El se
Doc. st or eAsURL(URL, Dunmy())
End | f
End | f

The example first checks whether the relevant document has been modified since it was last saved.
It only continues with the saving process if this is the case. If the document has already been
assigned a URL and is not a read-only document, it is saved under the existing URL. If it does not
have a URL or was opened in its read-only status, it is saved under a new URL.

78 StarOffice™ 7 Basic Programmer's Guide

storeAsURL Method Options

As with the | oadConponent Fr omURL method, some options can also be specified in the form of a
Pr opert yVal ue data field using the st or eAsURL method. These determine the procedure
StarOffice uses when saving a document. st or eAsURL provides the following options:

= CharacterSet (String) —defineswhich set of characters a document is based on.

= FilterNane (String) - specifies a special filter for the | oadConponent Fr omURL function.
The filter names available are defined in the \ shar e\ confi g\regi stry\i nstance\ or g\
openof fi ce\ of fi ce\ TypeDet ecti on. xm file.

= FilterOptions (String) -defines additional options for filters.

= Overwite (Bool ean) —allows a file which already exists to be overwritten without a query.
= Password (String) —transfers the password for a protected file.

= Unpacked (Bool ean) —saves the document (not compressed) in sub-directories.

The following example shows how the Over wr i t e option can be used in conjunction with
storeAsURL:

Di m Doc As (bj ect
Dim Fil eProperties(0) As New com sun. st ar. beans. PropertyVal ue
Dm Ul As String

Initialize Doc

Ul = "file://l/lc:/test3.sxw'

Fi |l eProperties(0). Name = "Overwite"
Fi | eProperties(0). Value = True

Doc. storeAsURL(sUrl, nFileProperties())

The example then saves Doc under the specified file name if a file already exists under the name.

Printing Documents

Similar to saving, documents are printed out directly by means of the document object. The Pri nt
method of the com sun. st ar. vi ew. Xpri nt abl e interface is provided for this purpose.
In its simplest form, the pri nt callis:

Di m Dummy ()
Doc. print (Dummy())

As in the case of the | oadConponent Fr omJRL method, the Dunmry parameter is a
Pr opertyVal ue data field through which StarOffice can specify several options for printing.

Chapter 5 Working with StarOffice Documents 79

The options of the print method

The pri nt method expects a Pr opert yVal ue data field as a parameter, which reflects the
settings of the print dialog of StarOffice:

= CopyCount (I nteger) —specifies the number of copies to be printed.

= FileName (String) - printsthe document in the specified file.

= Col | ate (Bool ean) —advises the printer to collate the pages of the copies.

= Sort (Bool ean) —sorts the pages when printing out several copies (CopyCount > 1).

= Pages (String) -contains the list of the pages to be printed (syntax as specified in print
dialog).

The following example shows how several pages of a document can be printed out using the
Pages option:

Di m Doc As (bj ect
Di m Print Properties(0) As New com sun. star. beans. PropertyVal ue

Pri nt Properties(0). Nane="Pages"
Print Properties(0).Val ue="1-3; 7; 9"

Doc. print (PrintProperties())

Printer selection and settings

The com sun. st ar. vi ew. XPri nt abl e interface provides the Pri nt er property, which selects
the printer. This property receives a Pr oper t yVal ue data field with the following settings:

= Name (String) - specifies the name of printer.

= PaperOrientation (Enum -—specifies the paper orientation
(com sun. st ar. vi ew. Paper Ori ent at i on. PORTRAI T value for portrait format,
com sun. st ar. vi ew. Paper Ori ent at i on. LANDSCAPE for landscape format).

= Paper Format (Enun) - specifies the paper format (for example,
com.sun.star.view.PaperFormat.A4 for DIN A4 or
com sun. star. vi ew. Paper For mat . Let t er for US letters).

= Paper Si ze (Size) - specifies the paper size in hundredths of a millimeter.

80 StarOffice™ 7 Basic Programmer's Guide

The following example shows how a printer can be changed and the paper size set with the help of
the Pri nt er property.

Di m Doc As Obj ect
Dim PrinterProperties(1l) As New com sun. st ar. beans. PropertyVal ue
Di m Paper Si ze As New com sun. star.aw . Si ze

Paper Si ze. Wdt h = 20000 ' corresponds to 20 cm
Paper Si ze. Hei ght = 20000 ' corresponds to 20 cm

PrinterProperties (0).Nane="Nane"
PrinterProperties (0).Value="My HP Laserjet"

PrinterProperties (1).Nane="PaperSi ze"
PrinterProperties (1).Val ue=PaperSi ze

Doc. Printer = PrinterProperties()

The example defines an object named Paper Si ze with the com sun. star. awt. Si ze type.
This is needed to specify the paper size. Furthermore, it creates a data field for two

Pr opert yVal ue entries named Pri nt er Proper ti es. This data field is then initialized with the
values to be set and assigned the Pr i nt er property. From the standpoint of UNO, the printer is
not a real property but an imitated one.

Templates

Templates are named lists containing formatting attributes. They move through all applications of
StarOffice and help to significantly simplify formatting. If the user changes one of the attributes of
a template, then StarOffice automatically adjusts all document sections depending on the attribute.
The user can therefore, for example, change the font type of all level one headers by means of a
central modification in the document. Depending on the relevant document types, StarOffice
recognizes a whole range of different types of template.

StarOffice Writer supports

= character templates,

= paragraph templates,

= frame templates,

= page templates

= humbering templates
StarOffice Calc supports

= cell template

= page templates
StarOffice Impress supports
= character element templates

= presentation templates

Chapter 5 Working with StarOffice Documents 81

In StarOffice terminology, the different types of templates are called St yl eFami | i es in
accordance with the com sun. star. styl e. Styl eFam | y service on which they are based.
The St yl eFami | i es are accessed by means of the document object:

Di m Doc As (bj ect

Di m Sheet As Obj ect

Dim Styl eFanmi | i es As Object
Dim Cel | Styl es As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Styl eFam | ies = Doc. Styl eFam | i es
Cel |l Styles = Styl eFami | i es. get ByNanme("Cel | Styl es")

The example uses the St yl eFami | i es property of a spreadsheet document to establish a list
containing all available cell templates.

The individual templates can be accessed directly by means of an index:

Di m Doc As Obj ect

Di m Sheet As Obj ect

Dim Styl eFami i es As Object
Dim Cel | Styl es As Obj ect
Dim Cel | Styl e As bj ect
Dim | As |nteger

Doc = St ar Deskt op. Curr ent Conponent
Styl eFam |ies = Doc. Styl eFam | i es
Cel |l Styles = Styl eFani|ies. get ByNane("Cel | Styl es")

For | =0 To Cell Styles.Count - 1
Cell Style = Cel | Styl es(1)
MsgBox Cel | Styl e. Nane

Next |

The loop added since the previous example displays the names of all cell templates one after
another in a message box.

Details about various formatting options

Each type of template provides a whole range of individual formatting properties. Here is an
overview of the most important formatting properties and the points at which they are explained:

= Character properties, Chapter 6, Text Documents,
com sun. star. styl e. Charact er Properti es service

= Paragraph properties, Chapter 6, Text Documents,
com sun. star.text. Paragraph service

= Cell properties, Chapter 7, Spreadsheet Documents,
com sun. star.table. Cell Properti es service

= Page properties, Chapter 7, Spreadsheet Documents,
com sun. star. styl e. PageSt yl e service

82 StarOffice™ 7 Basic Programmer's Guide

= Character element properties, Chapter 7, Spreadsheet Documents,
Various services

The format properties are by no means restricted to the applications in which these are explained,
but instead can be used universally. For example, most of the page properties described in Chapter
7 can therefore be used not only in StarOffice Calc, but also in StarOffice Writer.

More information about working with templates can be found in the Default values for character and
paragraph properties section in Chapter 6, Text Documents.

Chapter 5 Working with StarOffice Documents 83

84 StarOffice™ 7 Basic Programmer's Guide

CHAPTER 6

Text Documents

In addition to pure strings, text documents also contain formatting information. These may appear
at any point in the text. The structure is further complicated by tables. These include not only
single-dimensional strings, but also two-dimensional fields. Most word processing programs now
finally provide the option of placing drawing objects, text frames and other objects within a text.
These may be outside the flow of text and can be positioned anywhere on the page.

This chapter presents the central interfaces and services of text documents. The first section deals
with the anatomy of text documents and concentrates on how a StarOffice Basic program can be
used to take iterative steps through a StarOffice document. It focuses on paragraphs, paragraph
portions and their formatting.

The second section focuses on efficiently working with text documents. For this purpose, StarOffice
provides several help objects, such as the Text Cur sor object, which extend beyond those
specified in the first section.

The third section moves beyond work with texts. It concentrates on tables, text frames, text fields,
bookmarks, content directories and more.

Information about how to create, open, save and print documents is described in Chapter 5,
because it can be used not only for text documents, but also for other types of document.

The Structure of Text Documents

A text document can essentially contain four types of information:
= the actual text

= templates for formatting characters, paragraphs, and pages

= hon-text elements such as tables, graphics and drawing objects
= global settings for the text document

This section concentrates especially on the text and associated formatting options.

The design of the StarOffice 7 API for StarOffice Writer differs from that of the previous version. The old
API version concentrated on work with the Sel ect i on object, which was heavily oriented towards the idea
of the user interface for end users, which focused on mouse-controlled highlighting work.

The StarOffice 7 API has replaced these connections between user interface and programmer interface.
The programmer therefore has parallel access to all parts of an application and can work with objects from
different sub-sections of a document at the same time. The old Sel ect i on object is no longer available.

85

Paragraphs and Paragraph Portions

The core of a text document consists of a sequence of paragraphs. These are neither named nor
indexed and there is therefore no possible way of directly accessing individual paragraphs. The
paragraphs can however be sequentially traversed with the help of the Enumer at i on object
described in Chapter 4. This allows the paragraphs to be edited.

When working with the Enuner at i on object, one special scenario should, however, be noted:

it not only returns paragraphs, but also tables (strictly speaking, in StarOffice Writer, a table is a
special type of paragraph). Before accessing a returned object, you should therefore check whether
the returned object supports the com sun. st ar . t ext . Par agr aph service for paragraphs or the
com sun. star. text. Text Tabl e service for tables.

The following example traverses the contents of a text document in a loop and uses a message in
each instance to inform the user whether the object in question is a paragraph or table.

Di m Doc As Obj ect
Di m Enum As Obj ect
Di m Text El ement As Obj ect

Creat e docunent object
Doc = St ar Deskt op. Curr ent Conponent

Create enuneration object
Enum = Doc. Text. cr eat eEnuner ati on

| oop over all text elenments
Wi | e Enum hasMor eEl enent s
Text El ement = Enum next El enent

I f Text El enent. supportsService("com sun. star.text. Text Tabl e") Then
MsgBox "The current block contains a table."
End |f

| f Text El ement . supportsService("com sun. star.text.Paragraph") Then
MsgBox "The current bl ock contains a paragraph.”
End |f
Wénd

The example creates a Doc document object which references the current StarOffice document.
With the aid of Doc, the example then creates an Enumrer at i on object that traverses through the
individual parts of the text (paragraphs and tables) and assigns the current element to

Text El ement object. The example uses the suppor t sSer vi ce method to check whether the
Text El ement is a paragraph or a table.

86 StarOffice™ 7 Basic Programmer's Guide

Paragraphs

The com sun. st ar. t ext. Par agr aph service grants access to the content of a paragraph. The
text in the paragraph can be retrieved and modified using the St ri ng property:

Di m Doc As (bj ect
Di m Enum As Obj ect
Di m Text El enent As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Enum = Doc. Text. cr eat eEnuner ati on

Wi | e Enum hasMor eEl enent s
Text El enent = Enum next El enent

I f Text El ement . supportsServi ce("com sun. star.text.Paragraph") Then
Text El enent. String = Repl ace(TextEl ement. String, "you", "U')
Text El ement. String = Repl ace(TextEl ement. String, "too", "2")
Text El ement. String = Repl ace(TextEl ement. String, "for", "4")
End | f
Wend

The example opens the current text document and passes through it with the help of the

Enuner at i on object. It uses the Text El enent . St ri ng property in all paragraphs to access the
relevant paragraphs and replaces the you, t oo and f or strings with the U, 2 and 4 characters.

The Repl ace function used for replacing does not fall within the standard linguistic scope of
StarOffice Basic. This is an instance of the example function described in Chapter 3 in the Search and
Replace section.

The content of the procedure described here for accessing the paragraphs of a text is comparable with the
Par agr aphs listing used in VBA, which is provided in the Range and Docunent objects available there.
Whereas in VBA the paragraphs are accessed by their number (for example, by the Par agr aph(1) call),
in StarOffice Basic, the Enuner at i on object described previously should be used.

There is no direct counterpart in StarOffice Basic for the Char act er s, Sent ences and Wr ds lists
provided in VBA. You do, however, have the option of switching to a Text Cur sor which allows for
navigation at the level of characters, sentences and words (refer to The TextCursor).

Paragraph Portions

The previous example may change the text as requested, but it may sometimes also destroy the
formatting.

This is because a paragraph in turn consists of individual sub-objects. Each of these sub-objects
contains its own formatting information. If the center of a paragraph, for example, contains a word
printed in bold, then it will be represented in StarOffice by three paragraph portions: the portion
before the bold type, then the word in bold, and finally the portion after the bold type, which is
again depicted as normal.

Chapter 6 Text Documents 87

If the text of the paragraph is now changed using the paragraph’s St r i ng property, then
StarOffice first deletes the old paragraph portions and inserts a new paragraph portion. The
formatting of the previous sections is then lost.

To prevent this effect, the user can access the associated paragraph portions rather than the entire
paragraph. Paragraphs provide their own Enuner at i on object for this purpose. The following
example shows a double loop which passes over all paragraphs of a text document and the
paragraph portions they contain and applies the replacement processes from the previous example:

Di m Doc As (bj ect

Di m Enunl As Obj ect

Di m Enun2 As Obj ect

Di m Text El ement As Obj ect
Di m Text Portion As Object

Doc = St ar Deskt op. Curr ent Conponent
Enunl = Doc. Text . cr eat eEnunerati on

| oop over all paragraphs
Wi | e Enuml. hasMor eEl enent s
Text El enent = Enuml. next El enent
I f Text El enent. supportsService("com sun. star.text.Paragraph") Then
Enun? = Text El enent . cr eat eEnuner ati on

' loop over all sub-paragraphs
Wi | e Enun®. hasMor eEl enent s
Text Portion = Enun?. next El enent
MsgBox "'" & TextPortion.String & """
Text Portion. String = Repl ace(TextPortion.String, "you", "U')
TextPortion. String = Repl ace(TextPortion. String, "too", "2")
TextPortion. String = Repl ace(TextPortion. String, "for", "4")
Wend

End | f
Wend

The example runs through a text document in a double loop. The outer loop refers to the
paragraphs of the text. The inner loop processes the paragraph portions in these paragraphs. The
example code modifies the content in each of these paragraph portions using the St ri ng property
of the string. as is the case in the previous example for paragraphs. Since however, the paragraph
portions are edited directly, their formatting information is retained when replacing the string.

Formatting

There are various ways of formatting text. The easiest way is to assign the format properties
directly to the text sequence. This is called direct formatting. Direct formatting is used in particular
with short documents because the formats can be assigned by the user with the mouse. You can,
for example, highlight a certain word within a text using bold type or center a line.

88 StarOffice™ 7 Basic Programmer's Guide

In addition to direct formatting, you can also format text using templates. This is called indirect
formatting. With indirect formatting, the user assigns a pre-defined template to the relevant text
portion. If the layout of the text is changed at a later date, the user only needs to change the
template. StarOffice then changes the way in which all text portions which use this template are
depicted.

In VBA, the formatting properties of an object are usually spread over a range of sub-objects (for example,
Range. Font , Range. Bor der s, Range. Shadi ng, Range. Par agr aphFor mat). The properties are accessed
by means of cascading expressions (for example, Range. Font . Al | Caps). In StarOffice Basic, the formatting
properties on the other hand are available directly, using the relevant objects (Text Cur sor , Par agr aph, and
so on). You will find an overview of the character and paragraph properties available in StarOffice in the following
two sections.

In the old StarOffice API, a text was essentially formatted using the Sel ecti on object and its subordinate
objects (for example, Sel ecti on. Font , Sel ecti on. Par agr aph and Sel ecti on. Bor der). In the new

API, the formatting properties can be found in each object (Par agr aph, Text Cur sor, and so on) and can
be applied directly. A list of the character and paragraph properties available can be found in the following

paragraphs.

Character Properties

Those format properties that refer to individual characters are described as character properties.
These include bold type and the font type. Objects that allow character properties to be set have to
support the com sun. st ar. styl e. Char act er Properti es service. StarOffice recognizes a
whole range of services that support this service. These include the previously described

com sun. st ar.text. Paragraph services for paragraphs as well as the

com sun. star.text. Text Porti on services for paragraph portions.

The com sun. st ar. styl e. Charact er Properti es service does not provide any interfaces,
but instead offers a range of properties through which character properties can be defined and
called. A complete list of all character properties can be found in the StarOffice API reference. The
following list describes the most important properties:

= Char Font Nanme (String) —name of font type selected.
= Char Col or (Long) - textcolor.
= Char Hei ght (Fl oat) —character height in points (pt).

= CharUnderline (Constant group) —type of underscore (constants in accordance with
com sun. st ar. awt . Font Under | i ne).

= Char Wi ght (Constant group) - fontweight(constants in accordance with
com sun. st ar. awt . Font Wi ght).

= Char BackCol or (Long) - background color.
= Char KeepToget her (Bool ean) —suppression of automatic line break.

= Char Styl eNane (String) —name of character template.

Chapter 6 Text Documents 89

Paragraph Properties

Formatting information that does not refer to individual characters, but to the entire paragraph is
considered to be a paragraph property. This includes the distance of the paragraph from the edge
of the page as well as line spacing. The paragraph properties are available through the

com sun. star. styl e. Paragr aphPr operti es service.

Even the paragraph properties are available in various objects. All objects that support the
com sun. star.text. Paragraph service also provide support for the paragraph properties in
com sun. star. styl e. ParagraphProperti es.

A complete list of the paragraph properties can be found in the StarOffice API reference. The most
common paragraph properties are;

= ParaAdjust (enum - vertical text orientation (constants in accordance with
com sun. star. styl e. Paragr aphAdj ust).

= ParalineSpaci ng (struct) -line spacing (structure in accordance with
com sun. star. styl e. Li neSpaci ng).

= ParaBackCol or (Long) - background color.

= ParalLeftMargi n (Long) - left margin in 100ths of a millimeter.

= ParaRi ght Margi n (Long) - right margin in 100ths of a millimeter.

= ParaTopMargi n (Long) —top margin in 100ths of a millimeter.

= ParaBottomvargi n (Long) —bottom margin in 100ths of a millimeter.

= ParaTabStops (Array of struct) —typeand position of tabs (array with structures of
the Typscom sun. st ar. styl e. TabSt op).

= ParaStyl eNane (String) —name of the paragraph template.

90 StarOffice™ 7 Basic Programmer's Guide

Example: simple HTML export

The following example demonstrates how to work with formatting information. It iterates through
a text document and creates a simple HTML file. Each paragraph is recorded in its own HTML
element <P> for this purpose. Paragraph portions displayed in bold type are marked using a
HTML element when exporting.

DimFil eNo As

Di m Doc As Obj

Integer, Filename As String, CurLine As String

ect

Di m Enunll As Obj ect, EnunR As Obj ect
Di m Text El enent As Obj ect, TextPortion As Object

Fil enane = "c:

\text.htm "

FileNo = Freefile

Open Fil ename
Print #FileNo,

For CQutput As #Fil eNo
" <HTML><BODY>"

Doc = St ar Deskt op. Curr ent Conponent
Enunl = Doc. Text . creat eEnunerati on

' loop over al

| paragraphs

Whi | e Enunil. hasMor eEl enent s
Text El ement = Enuml. next El enent
I f Text El ement . supportsServi ce("com sun. star.text.Paragraph") Then

End |f
Wend

Enun2 = Text El enent . cr eat eEnuner ati on
CurLine = "<pP>"

' |l oop over all paragraph portions
Wi | e Enun®. hasMor eEl ement s
Text Portion = Enun®. next El enent
I f TextPortion.CharWight = com sun. star.aw . Font Wi ght. BOLD THEN
CurLine = CurLine & "" & TextPortion.String & ""
El se
CurLine = CurLine & TextPortion.String
End |f
Wénd

out put the line
CurLine = CurlLine & "</P>"
Print #FileNo, CurlLine

' wite HTM. footer

Print #Fil eNo,

Cl ose #Fil eNo

" </ BODY></ HTML>"

The basic structure of the example is oriented towards the examples for running though the
paragraph portions of a text already discussed previously. The functions for writing the HTML file,

as well as a test

code that checks the font weight of the corresponding text portions and provides

paragraph portions in bold type with a corresponding HTML tag, have been added.

Chapter 6 Text Documents 91

Default values for character and paragraph properties

Direct formatting always takes priority over indirect formatting. In other words, formatting using
templates is assigned a lower priority than direct formatting in a text.

Establishing whether a section of a document has been directly or indirectly formatted is not easy.
The symbol bars provided by StarOffice show the common text properties such as font type,
weight and size. However, whether the corresponding settings are based on template or direct
formatting in the text is still unclear.

StarOffice Basic provides the get Pr opert ySt at e method, with which programmers can check
how a certain property was formatted. As a parameter, this takes the name of the property and
returns a constant that provides information about the origin of the formatting. The following
responses, which are defined in the com sun. st ar. beans. Propert ySt at e enumeration, are
possible:

= comsun. star. beans. PropertySt at e. DI RECT_VALUE - the property is defined directly
in the text (direct formatting),

= com sun. star. beans. PropertySt at e. DEFAULT_VALUE - the property is defined by a
template (indirect formatting)

= com sun. star. beans. PropertySt at e. AMBI GUOUS_VALUE - the property is unclear.
This status arises, for example, when querying the bold type property of a paragraph, which
includes both words depicted in bold and words depicted in normal font.

The following example shows how format properties can be edited in StarOffice. It searches
through a text for paragraph portions which have been depicted as bold type using direct
formatting. If it encounters a corresponding paragraph portion, it deletes the direct formatting
using the set Propert yToDef aul t method and assigns a MyBol d character template to the
corresponding paragraph portion.

92 StarOffice™ 7 Basic Programmer's Guide

Di m Doc As Obj ect

Di m Enunil As Obj ect

Di m Enun2 As Obj ect

Di m Text El ement As Obj ect
Di m Text Portion As Obj ect

Doc = St ar Deskt op. Cur r ent Conponent
Enuml = Doc. Text. creat eEnunerati on
' loop over all paragraphs
Whi | e Enuni. hasMor eEl ement s
Text El ement = Enunil. next El ement
I f Text El ement . supportsServi ce("com sun. star.text.Paragraph") Then
Enun? = Text El ement . cr eat eEnuner ati on
' |l oop over all paragraph portions
Whi | e Enun®. hasMor eEl ement s
Text Portion = Enun. next El ement
| f Text Portion. Char Wi ght = _
com sun. star. awt . Font Wei ght . BOLD AND _
Text Portion. get PropertyState(" Char Wi ght") = _
com sun. st ar. beans. PropertyStat e. DI RECT_VALUE Then

Text Porti on. set PropertyToDef aul t (" Char Wi ght")
Text Porti on. Char Styl eName = " M/Bol d"

End | f
Wend

End |f
Wend

Chapter 6 Text Documents 93

Editing Text Documents

The previous section has already discussed a whole range of options for editing text documents,
focusing on the com sun. st ar.text. Text Porti onand com sun. star.text. Paragraph
services,which grant access to paragraph portions as well as paragraphs. These services are
appropriate for applications in which the content of a text is to be edited in one pass through a
loop. However, this is not sufficient for many problems. StarOffice provides the

com sun. star.text. Text Cursor service for more complicated tasks, including navigating
backward within a document or navigating based on sentences ad words rather than

Text Porti ons.

The TextCursor

A Text Cur sor in the StarOffice APl is comparable with the visible cursor used in a StarOffice
document. It marks a certain point within a text document and can be navigated in various
directions through the use of commands. The Text Cur sor objects available in StarOffice Basic
should not, however, be confused with the visible cursor. These are two very different things.

Warning! Terminology differs from that used in VBA: In terms of scope of function, the Range object from
VBA can be compared with the Text Cur sor object in StarOffice and not — as the name possibly suggests
— with the Range object in StarOffice.

The Text Cur sor object in StarOffice, for example, provides methods for navigating and changing text which
are included in the Range object in VBA (for example, MoveSt ar t , MoveEnd, | nsert Bef or e,

I nsert Aft er). The corresponding counterparts of the Text Cur sor object in StarOffice are described in
the following sections.

Navigating within a Text

The Text Cur sor object in StarOffice Basic acts independently from the visible cursor in a text
document. A program-controlled position change of a Text Cur sor object has no impact
whatsoever on the visible cursor. Several Text Cur sor objects can even be opened for the same
document and used in various positions, which are independent of one another.

A Text Cur sor object is created using the cr eat eText Cur sor call:

Di m Doc As Obj ect
Di m Cursor As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Cursor = Text Docunent. Text. creat eText Cursor ()

The Cur sor object created in this way supports the com sun. st ar. t ext. Text Cur sor service,
which in turn provides a whole range of methods for navigating within text documents. The

following example first moves the Text Cur sor ten characters to the left and then three characters
to the right:

Cursor. goLeft (10, Fal se)
Cursor. goRi ght (3, Fal se)

94 StarOffice™ 7 Basic Programmer's Guide

A Text Cur sor can highlight a complete area. This can be compared with highlighting a point in
the text using the mouse. The Fal se parameter in the previous function call specifies whether the
area passed over with the cursor movement is highlightet. For example, the Text Cur sor in the
following example

Cur sor. goLeft (10, Fal se)
Cur sor. goRi ght (3, True)

first moves ten characters to the right without highlighting, and then moves back three characters
and highlights this. The area highlighted by the Text Cur sor therefore begins after the seventh
character in the text and ends after the tenth character.

Here are the central methods that the com sun. st ar. t ext . Text Cur sor service provides for
navigation:

= golLeft (Count, Expand) -jumps Count characters to the left.

= goRi ght (Count, Expand) —jumps Count characters to the right.

= gotoStart (Expand) —jumps to the start of the text document.

= gotoEnd (Expand) —jumps to the end of the text document.

= gotoRange (Text Range, Expand) -—jumps to the specified Text Range-Objekt.

= gotoStartOX Wrd (Expand) —jumps to the start of the current word.

= got oEndOf Word (Expand) -jumps to the end of the current word.

= got oNext Wrd (Expand) —jumps to the start of the next word.

= got oPrevi ousWrd (Expand) - jumps to the start of the previous word.

= isStartOfWord () -returns Tr ue if the Text Cur sor is at the start of a word.

» i SEndOFWord () -returns Tr ue if the Text Cur sor is at the end of a word.

= gotoStart O Sentence (Expand) - jumps to the start of the current sentence.

= got oEndOf Sent ence (Expand) - jumps to the end of the current sentence.

= got oNext Sent ence (Expand) - jumps to the start of the next sentence.

= got oPrevi ousSent ence (Expand) —jumps to the start of the previous sentence.

= isStartOf Sentence () -returns Tr ue if the Text Cur sor is at the start of a sentence.
= i SEndOF Sent ence () -returns Tr ue if the Text Cur sor is at the end of a sentence.

= gotoStartO Paragraph (Expand) —jumps to the start of the current paragraph.

= got oEndOf Par agr aph (Expand) -jumps to the end of the current paragraph.

= got oNext Par agr aph (Expand) —jumps to the start of the next paragraph.

= got oPrevi ousPar agr aph (Expand) - jumps to the start of the previous paragraph.
= isStart O Paragraph () —returns Tr ue if the Text Cur sor is at the start of a paragraph.

= i SEndOF Par agraph () —returns Tr ue if the Text Cur sor is at the end of a paragraph.

Chapter 6 Text Documents 95

The text is divided into sentences on the basis of sentence symbols. Periods are, for example,
interpreted as symbols indicating the end of sentences.

The Expand parameter is a Boolean value which specifies whether the area passed over during
navigation is to be highlighted. All navigation methods furthermore return a parameter which
specifies whether the navigation was successful or whether the action was terminated for lack of
text.

The following is a list of several methods for editing highlighted areas using a Text Cur sor and
which also support the com sun. st ar. t ext . Text Cur sor service:

= collapseToStart () - resetsthe highlighting and positions the Text Cur sor at the start of
the previously highlighted area.

= col |l apseToEnd () -resets the highlighting and positions the Text Cur sor at the end of the
previously highlighted area.

= isCollapsed () —returns Tr ue if the Text Cur sor does not cover any highlighting at present.

Formatting Text with TextCursor

The com sun. star.text. Text Cur sor service supports all the character and paragraph
properties that were presented at the start of this Chapter.

The following example shows how these can be used in conjunction with a Text Cur sor .
It passes through a complete document and formats the first word of every sentence in bold type.

Di m Doc As (bj ect
Di m Cursor As Obj ect
Di m Proceed As Bool ean

Doc = St ar Deskt op. Curr ent Conponent
Cursor = Doc. Text.creat eText Cursor

Do
Cur sor . got oEndOf Wor d(Tr ue)
Cur sor. Char Wei ght = com sun. st ar. awt . Font Wi ght . BOLD
Proceed = Cursor. got oNext Sent ence(Fal se)
Cur sor . got oNext Wor d(Fal se)
Loop Wil e Proceed

The example first creates a document object for the text that has just been opened. Then it iterates
through the entire text, sentence by sentence, and highlights each of the first words and formats
this in bold.

96 StarOffice™ 7 Basic Programmer's Guide

Retrieving and Modifying Text Contents

If a Text Cur sor contains a highlighted area, then this text is available by means of the St ri ng
property of the Text Cur sor object. The following example uses the St ri ng property to display

the first words of a sentence in a message box:

Di m Doc As (bj ect
Di m Cursor As bj ect
Di m Proceed As Bool ean

Doc = St ar Deskt op. Curr ent Conponent
Cursor = Doc. Text.creat eText Cursor

Do

Cur sor . got oEndOf Wor d(Tr ue)
MsgBox Cursor. String

Proceed = Cursor. got oNext Sent ence(Fal se)

Cur sor . got oNext Wor d(Fal se)

Loop Wil e Proceed

The first word of each sentence can be modified in the same way using the St r i ng property:

Di m Doc As Obj ect
Di m Cursor As Obj ect
Di m Proceed As Bool ean

Doc = St ar Deskt op. Cur r ent Conponent
Cursor = Doc. Text. creat eText Cursor

Do

Cur sor . got oEndOf Wor d(Tr ue)
Cursor.String = "Ups"

Proceed = Cursor. got oNext Sent ence(Fal se)

Cur sor . got oNext Wor d(Fal se)

Loop Wil e Proceed

If the Text Cur sor contains a highlighted area, an assignment to the St r i ng property replaces
this with the new text. If there is no highlighted area, the text is inserted at the present

Text Cur sor position.

Chapter 6 Text Documents 97

Inserting Control Codes

In some situations, it is not the actual text of a document, but rather its structure that needs
modifying. StarOffice provides control codes for this purpose. These are inserted in the text and
influence its structure. The control codes are defined in the

com sun. star.text. Control Charact er group of constants. The following control codes are
available in StarOffice:

= PARAGRAPH BREAK - paragraph break.

= LI NE_BREAK- line break within a paragraph.

= SOFT_HYPHEN - possible point for syllabification.

= HARD HYPHEN - obligatory point for syllabification.

= HARD SPACE - protected space that is not spread out or compressed in justified text.

To insert the control codes, you need not only the cursor but also the associated text document
objects. The following example inserts a paragraph after the 20" character of a text:

Di m Doc As (bj ect
Di m Cursor As Obj ect
Di m Proceed As Bool ean

Doc = St ar Deskt op. Curr ent Conponent

Cursor = Doc. Text. creat eText Cur sor
Cur sor. goRi ght (20, Fal se)

Doc. Text . i nsert Control Character(Cursor, _
com sun. star. text. Control Charact er. PARAGRAPH BREAK, Fal se)

The Fal se parameter in the call of the i nsert Cont r ol Char act er method ensures that the area
currently highlighted by the Text Cur sor remains after the insert operation. If the Tr ue
parameter is passed here, theni nsert Cont r ol Char act er replaces the current text.

Searching for Text Portions

In many instances, it is the case that a text is to be searched for a particular term and the
corresponding point needs to be edited. All StarOffice documents provide a special interface for
this purpose, and this interface always functions in accordance with the same principle: Before a
search process, what is commonly referred to as a Sear chDescr i pt or must first be created. This
defines what StarOffice searches for in a document. A Sear chDescr i pt or is an object which
supports the com sun. star. util . SearchDescri pt or service and can be created by means of
the cr eat eSear chDescr i pt or method of a document:

Di m SearchDesc As Obj ect
Sear chDesc = Doc. cr eat eSear chDescri pt or

Once the Sear chDescr i pt or has been created, it receives the text to be searched for;

Sear chDesc. searchString="any text"

98 StarOffice™ 7 Basic Programmer's Guide

In terms of its function, the Sear chDescr i pt or is best compared with the search dialog from
StarOffice. In a similar way to the search window, the settings needed for a search can be set in the
Sear chDescr i pt or object.

The properties are provided by the com sun. star. util. SearchDescri pt or service:
= SearchBackwar ds (Bool ean) - searches through the text backward rather than forward.

= SearchCaseSensitive (Bool ean) -takes uppercase and lowercase characters into
consideration during the search.

= Sear chRegul ar Expr essi on (Bool ean) - treats the search expression like a regular
expression.

= SearchStyl es (Bool ean) -searches through the text for the specified paragraph template.
= SearchWrds (Bool ean) - only searches for complete words.

The StarOffice Sear chSi mi | ari ty (or “fuzzy match”) function is also available in StarOffice
Basic. With this function, StarOffice searches for an expression that may be similar to but not
exactly the same as the search expression. The number of additional, deleted and modified
characters for these expressions can be defined individually. Here are the associated properties of
thecom sun. star. util . SearchDescri ptor service:

= SearchSimlarity (Bool ean) - performs asimilarity search.

= SearchSimlarityAdd (Short) - number of characters which may be added for a
similarity search.

= SearchSimlarityExchange (Short) - number of characters which may be replaced as
part of a similarity search.

= SearchSimlarityRenove (Short) -number of characters which may be removed as part
of a similarity search.

= SearchSimlarityRel ax (Bool ean) -takes all deviation rules into consideration at the
same time for the search expression.

Once the Sear chDescr i pt or has been prepared as requested, it can be applied to the text
document. The StarOffice documents provide the f i ndFi r st and f i ndNext methods for this
purpose:

Found = Doc. fi ndFirst (SearchDesc)

Do Wil e Found

Sucher gebni s bearbeiten
Found = Doc. fi ndNext (Found. End, Search)
Loop

The example finds all matches in a loop and returns a Text Range object, which refers to the found
text passage.

Chapter 6 Text Documents 99

Example: Similarity Search

This example shows how a text can be searched for the word "turnover" and the results formatted
in bold type. A similarity search is used so that not only the word “turnover”, but also the plural
form "turnovers" and declinations such as "turnover’s" are found. The found expressions differ by
up to two letters from the search expression:

Di m Sear chDesc As Obj ect
Di m Doc As (bj ect

Doc = St ar Deskt op. Curr ent Conponent

Sear chDesc = Doc. cr eat eSear chDescr i pt or
Sear chDesc. Sear chStri ng="t ur nover"

Sear chDesc. SearchSinmilarity = True

Sear chDesc. SearchSinmilarityAdd = 2

Sear chDesc. SearchSi mi | ari t yExchange = 2
Sear chDesc. SearchSi m | ari t yRenove = 2
Sear chDesc. SearchSi m | ari tyRel ax = Fal se

Found = Doc. findFirst (SearchDesc)

Do Wil e Found

Found. Char Wi ght = com sun. st ar. awt . Font Wi ght . BOLD
Found = Doc. fi ndNext (Found. End, Search)

Loop

The basic idea of search and replace in StarOffice is comparable to that used in VBA. Both interfaces provide
you with an object, through which the properties for searching and replacing can be defined. This object is
then applied to the required text area in order to perform the action. Whereas the responsible auxiliary object
in VBA can be reached through the Fi nd property of the Range object, in StarOffice Basic it is created by
the cr eat eSear chDescri pt or or cr eat eRepl aceDescri pt or call of the document object. Even the
search properties and methods available differ.

As in the old API from StarOffice, searching and replacing text in the new API is also performed using the
document object. Whereas previously there was an object called Sear chSet t i ngs especially for defining
the search options, in the new object searches are now performed using a Sear chDescr i pt or or

Repl aceDescri pt or object for automatically replacing text. These objects cover not only the options, but
also the current search text and, if necessary, the associated text replacement. The descriptor objects are
created using the document object, completed in accordance with the relevant requests, and then
transferred back to the document object as parameters for the search methods.

100 StarOffice™ 7 Basic Programmer's Guide

Replacing Text Portions

Just as with the search function, the replacement function from StarOffice is also available in
StarOffice Basic. The two functions are handled identically. A special object which records the
parameters for the process is also first needed for a replacement process. It is called a

Repl aceDescri pt or and supports the com sun. star. util. Repl aceDescri ptor service.
All the properties of the Sear chDescr i pt or described in the previous paragraph are also
supported by Repl aceDescr i pt or . For example, during a replacement process, case sensitivity
can also be activated and deactivated, and similarity searches can be performed.

The following example demonstrates the use of Repl aceDescr i pt or s for a search within a
StarOffice document.

Dim| As Long

Di m Doc As (bj ect

Di m Repl ace As bj ect

Dim BritishWrds(5) As String
Dim USWrds(5) As String

BritishWwrds() = Array("colour", "neighbour", "centre", "behaviour",
"metre", "through")

Uswords() = Array("color", "neighbor", "center", "behavior", _
"meter", "thru")

Doc = St ar Deskt op. Curr ent Conponent
Repl ace = Doc. cr eat eRepl aceDescr i pt or

For O= 0 To 5
Repl ace. SearchString = BritishWrds(l)
Repl ace. Repl aceString = USWords(1)
Doc. repl aceAl | (Repl ace)

Next n

The expressions for searching and replacing are set using the Sear chStri ng and

Repl aceSt ri ng properties of the Repl aceDescr i pt or s. The actual replacement process is
finally implemented using the r epl aceAl | method of the document object, which replaces all
occurrences of the search expression.

Example: searching and replacing text with regular expressions

The replacement function of StarOffice is particularly effective when used in conjunction with
regular expressions. These provide the option of defining a variable search expression with place
holders and special characters rather than a fixed value.

The regular expressions supported by StarOffice are described in detail in the online help section
for StarOffice. Here are a few examples:

= A period within a search expression stands for any character. The search expression sh. rt
therefore can stand for both for shi rt and for short.

= The character » marks the start of a paragraph. All occurrences of the name Pet er that are at
the start of a paragraph can therefore be found using the search expression *Pet er .

Chapter 6 Text Documents 101

= The character $ marks a paragraph end. All occurrences of the name Pet er that are at the end
of a paragraph can therefore be found using the search expression Pet er $.

= A~ indicates that the preceding character may be repeated any number of times. It can be
combined with the period as a place holder for any character. The t enper . * e expression, for
example, can stand for the expressions t enper ance and t enper at ur e.

The following example shows how all empty lines in a text document can be removed with the
help of the regular expression *$:

Di m Doc As Obj ect
Di m Repl ace As Obj ect
Dim| As Long

Doc = St ar Deskt op. Curr ent Conponent
Repl ace = Doc. cr eat eRepl aceDescri pt or

Repl ace. Sear chRegul ar Expr essi on = True
Repl ace. SearchString = "*$"
Repl ace. Repl aceString = ""

Doc. repl aceAl | (Repl ace)

Text Documents: More than Just Text

So far, this chapter has only dealt with text paragraphs and their portions. But text documents may
also contain other objects. These include tables, drawings, text fields and directories. All of these
objects can be anchored to any point within a text.

Thanks to these common features, all of these objects in StarOffice support a common basic service
called com sun. st ar. t ext . Text Cont ent . This provides the following properties:

= Anchor Type (Enum - determines the anchor type of a Text Cont ent object (default values
in accordance with com sun. st ar. t ext . Text Cont ent Anchor Type enumeration).

= Anchor Types (sequence of Enum -enumeration of all Anchor Types which support a
special Text Cont ent object.

= Text Wap (Enun) —determines the text wrap type around a Text Cont ent object (default
values in accordance with com sun. st ar. t ext . W apText Mode enumeration).

The Text Cont ent objects also share some methods - in particular, those for creating, inserting
and deleting objects.

= A new Text Cont ent object is created using the cr eat el nst ance method of the document
object.

= Anobject is inserted using the i nsert Text Cont ent method of the text object.
= Text Cont ent objects are deleted using the r enoveText Cont ent method.

You will find a range of examples which use these methods in the following sections.

102 StarOffice™ 7 Basic Programmer's Guide

Tables

The following example creates a table with the help of the cr eat el nst ance method described
previously.

Di m Doc As Obj ect
Di m Tabl e As Obj ect
Di m Cursor As Obj ect

Doc = St ar Deskt op. Cur r ent Conponent
Cursor = Doc. Text. creat eText Cursor()

Tabl e = Doc. creat el nst ance("com sun. star.text. Text Tabl e")
Table.initialize(5, 4)

Doc. Text. i nsert Text Cont ent (Cursor, Table, Fal se)
Once created, the table is set to the number of rows and columns requested usingani niti ali ze
call and then inserted in the text document using i nsert Text Cont ent .

As can be seen in the example, the i nsert Text Cont ent method expects not only the Cont ent
object to be inserted, but two other parameters:

= aCursor object which determines the insert position

= aBoolean variable which specifies whether the Cont ent object is to replace the current
selection of the cursor (Tr ue value) or is to be inserted before the current selection in the text
(Fal se)

When creating and inserting tables in a text document, objects similar to those available in VBA are used
in StarOffice Basic: The document object and a Text Cur sor object in StarOffice Basic or the Range

object as the VBA counterpart. Whereas the Docurnent . Tabl es. Add method takes on the task of
creating and setting the table in VBA, this is created in StarOffice Basic in accordance with the previous

example using cr eat el nst ance, initialized and inserted in the document through i nsert Text Cont ent .

The tables inserted in a text document can be determined using a simple loop. The method of the
get Text Tabl es() of the text document object is used for this purpose:

Di m Doc As (bj ect

Di m Text Tabl es As Obj ect

Di m Tabl e As Obj ect

Dim | As I|nteger

Doc = St ar Deskt op. Curr ent Conponent

Text Tabl es = Doc. get Text Tabl es()

For | = 0 to TextTables.count - 1
Tabl e = Text Tabl es(1)

Editing table
Next |

Text tables are available in StarOffice 7 through the Text Tabl es list of the document object. This takes
the place of the former tables list provided in the Sel ect i on object. The previous example shows how a
text table can be created. The options for accessing text tables are described in the following section.

Chapter 6 Text Documents 103

Editing Tables

A table consists of individual rows. These in turn contain the various cells. Strictly speaking, there
are no table columns in StarOffice. These are produced implicitly by arranging the rows (one under
another) next to one another. To simplify access to the tables, StarOffice, however, provides some
methods which operate using columns. These are useful if no cells have been merged in the table.

Let us first take the properties of the table itself. These are defined in the
com sun. star.text. Text Tabl e service. Here is an list of the most important properties of the
table object:

= BackCol or (Long) -background color of table.

= Bottonvargi n (Long) —bottom margin in 100ths of a millimeter.

= LeftMargin (Long) - left margin in 100ths of a millimeter.

= RightMargi n (Long) - right margin in 100ths of a millimeter.

= TopMargi n (Long) —top margin in 100ths of a millimeter.

= Repeat Headl i ne (Bool ean) —table header is repeated on every page.

= Wdth (Long) - absolute width of the table in 100ths of a millimeter.

Rows

A table consists of a list containing rows. The following example shows how the rows of a table can
be retrieved and formatted.

Di m Doc As Obj ect

Di m Tabl e As Obj ect

Di m Cursor As Obj ect

Di m Rows As Obj ect

Di m Row As (bj ect

Dim | As |nteger

Doc = St ar Deskt op. Curr ent Conponent
Cursor = Doc. Text.creat eText Cursor ()

Tabl e = Doc. creat el nst ance("com sun. star.text. Text Tabl e")
Table.initialize(5, 4)

Doc. Text . i nsert Text Cont ent (Cursor, Table, Fal se)
Rows = Tabl e. get Rows
For | = 0 To Rows.getCount() - 1
Row = Rows. get Byl ndex(|)
Row. BackCol or = &HFFOOFF
Next

The example first creates a list containing all rows using a Tabl e. get Rows call. The get Count
and get Byl ndex methods allow the list to be further processed and belongs to the

com sun. star.tabl e. Xt abl eRows interface. The get Byl ndex method returns a row object,
which supports the com sun. st ar. t ext . Text Tabl eRowservice.

Here are the central methods of the com sun. st ar. t abl e. Xt abl eRows interface:

104 StarOffice™ 7 Basic Programmer's Guide

get Byl ndex(| nt eger) - returns a row object for the specified index.
get Count () - returns the number of row objects.
i nsert Byl ndex (| ndex, Count) —inserts Count rows in the table as of the | ndex position.

renoveByl ndex (| ndex, Count) —deletes Count rows from the table as of the | ndex
position.

Whereas the get Byl ndex and get Count methods are available in all tables, the i nsert Byl ndex
and r emoveBy| ndex methods can only be used in tables that do not contain merged cells.

The com sun. st ar. t ext. Text Tabl eRowservice provides the following properties:

BackCol or (Long) - background color of row.
Hei ght (Long) - height of line in 100ths of a millimeter.
| sAut oHei ght (Bool ean) —table height is dynamically adapted to the content.

Vert Orient (const) - vertical orientation of the text frame — details on vertical orientation of
the text within the table (values in accordance with com sun. star.text. Vert Ori ent ati on)

Columns

Columns are accessed in the same way as rows, using the get Byl ndex, get Count ,

i nsert Byl ndex and r enoveByl ndex methods on the Col unm object, which is reached through
get Col umms. They can, however, only be used in tables that do not contain merged table cells.
Cells cannot be formatted by column in StarOffice Basic. To do so, the method of formatting
individual table cells must be used.

Chapter 6 Text Documents 105

Cells

Each cell of a StarOffice-document has a unique name. If the cursor of StarOffice is in a cell, then
the name of that cell can be seen in the status bar. The top left cell is usually called Al and the
bottom right row is usually called Xn, where X stands for the letters of the top column and n for the
numbers of the last row. The cell objects are available through the get Cel | ByNane() method of
the table object. The following example shows a loop that passes through all the cells of a table and
enters the corresponding row and column numbers into the cells.

Di m Doc As Obj ect

Di m Tabl e As Obj ect

Di m Cursor As Obj ect
Di m Rows As Obj ect

Di m Rowl ndex As | nteger
Dim Col s As Obj ect

Di m Col | ndex As | nteger
Dim Cel | Nane As String
Dim Cel |l As Object

Doc = St ar Deskt op. Curr ent Conponent
Cursor = Doc. Text.createText Cursor ()

Tabl e = Doc. creat el nstance("com sun. star.text. Text Tabl e")
Table.initialize(5, 4)

Doc. Text . i nsert Text Cont ent (Cur sor, Tabl e, Fal se)

Rows Tabl e. get Rows
Col s = Tabl e. get Col utms

For Rowl ndex = 1 To Rows. get Count ()
For Collndex = 1 To Col s. get Count ()
Cel | Name = Chr (64 + Col | ndex) & Row ndex
Cel | = Tabl e. get Cel | ByNanme(Cel | Nane)
Cell.String = "row. " & CStr(Row ndex) + ", colum: " & CStr(Col | ndex)
Next
Next

A table cell is comparable with a standard text. It supports the cr eat eText Cur sor interface for
creating an associated Text Cur sor object.

Cel | Cursor = Cell.createText Cursor()

All formatting options for individual characters and paragraphs are therefore automatically
available.

106 StarOffice™ 7 Basic Programmer's Guide

The following example searches through all tables of a text document and applies the right-align
format to all cells with numerical values by means of the corresponding paragraph property.

Di m Doc As (bj ect

Di m Text Tabl es As (bj ect
Di m Tabl e As Obj ect

Di m Cel | Narres

Dim Cel |l As Object

Di m Cel | Cursor As Obj ect

D m

As | nteger

DimJ As |nteger

Doc

St ar Deskt op. Cur r ent Corponent

Text Tabl es = Doc. get Text Tabl es()

For

Next

= 0 to TextTabl es.count - 1
Tabl e = Text Tabl es(|)
Cel | Names = Tabl e. get Cel | Nanes()

For J = 0 to UBound(Cel | Nanes)
Cel | = Tabl e. get Cel | ByNanme(Cel | Narmres(J))
If IsNuneric(Cell.String) Then
Cel | Cursor = Cell.createText Cursor ()
Cel | Cur sor. paraAdj ust = com sun. star. styl e. Par agr aphAdj ust . Rl GHT
End |f
Next

The example creates a Text Tabl es list containing all tables of a text that are traversed in a loop.
StarOffice then creates a list of the associated cell names for each of these tables. There are passed
through in turn in a loop. If a cell contains a numerical value, then the example changes the
formatting correspondingly. To do this, it first creates a Text Cur sor object which makes reference
to the content of the table cell and then adapts the paragraph properties of the table cell.

Text Frames

Text frames are considered to be Text Cont ent objects, just like tables and graphs. They may
essentially consist of standard text, but can be placed at any position on a page and are not
included in the text flow.

As with all Text Cont ent objects, a distinction is also made with text frames between the actual
creation and insertion in the document.

Di m Doc As Obj ect

Di m Text Tabl es As Obj ect
Di m Cursor As Obj ect

Di m Frame As Obj ect

Doc

Cur sor

Fr ame

St ar Deskt op. Cur r ent Conrponent
= Doc. Text . creat eText Cursor ()
= Doc. creat el nstance("com sun. star. text. Text Frane")

Doc. Text . i nsert Text Cont ent (Cursor, Franme, Fal se)

Chapter 6 Text Documents 107

The text frame is created using the cr eat el nst ance method of the document object. The text
frame created in this way can then be inserted in the document using the i nsert Text Cont ent
method of the Text object. In so doing, the name of the proper

com sun. star.text. Text Fr ane service should be specified.

The text frame’s insert position is determined by a Cur sor object, which is also executed when
inserted.

Text frames are StarOffice’s counterpart to the position frame used in Word. Whereas VBA uses the
Docunent . Fr ames. Add method for this purpose, creation in VBA is performed using the previous
procedure with the aid of a TextCursor as well as the cr eat el nst ance method of the document object.

Text frame objects provide a range of properties with which the position and behavior of the frame
can be influenced. The majority of these properties are defined in the

com sun. star.text.BaseFraneProperti es service, which is also supported by each
TextFrame service. The central properties are;

= BackCol or (Long) - background color of the text frame.

= BottonmMargi n (Long) - bottom margin in 100ths of a millimeter.
= LeftMargin (Long) - left margin in 100ths of a millimeter.

= RightMargi n (Long) - right margin in 100ths of a millimeter.

= TopMargi n (Long) —top margin in 100ths of a millimeter.

= Hei ght (Long) -height of text frame in 100ths of a millimeter.

= Wdth (Long) —width of text frame in 100ths of a millimeter.

= HoriOrient (const) —horizontal orientation of text frame (in accordance with
com sun. star.text. Hori Orientation).

= VertOrient (const) —vertical orientation of text frame (in accordance with
com sun.star.text.VertOrientation).

108 StarOffice™ 7 Basic Programmer's Guide

The following example creates a text frame using the properties described previously:

Di m Doc As (bj ect

Di m Text Tabl es As (bj ect
Di m Cursor As bj ect

Di m Frame As Obj ect

Doc = St ar Deskt op. Curr ent Conponent

Cursor = Doc. Text . creat eText Cursor()

Cur sor . got oNext Wor d(Fal se)

Frame = Doc. createl nstance("com sun. star.text. Text Frame")

Frame. Wdth = 3000

Frame. Hei ght = 1000

Frane. Anchor Type = com sun. st ar. t ext . Text Cont ent Anchor Type. AS_CHARACTER
Frane. TopMargin = 0
Frane. BottomVargi n =
Frane. Left Margin = 0
Frame. Ri ght Margin = 0
Frame. Bor der Di stance = 0

Frame. Hori Ori ent = com sun. star.text. Hori Oientation. NONE
Frame. Vert Orient = comsun.star.text.VertOientation. LI NE_ TOP

0

Doc. Text . i nsert Text Cont ent (Cursor, Franme, False)

The example creates a Text Cur sor as the insertion mark for the text frame. This is positioned
between the first and second word of the text. The text frame is created using

Doc. cr eat el nst ance. The properties of the text frame objects are set to the starting values
required.

The interaction between the Anchor Type (from the Text Cont ent Service) and Vert Ori ent
(from the BaseFr anePr operti es Service) properties should be noted here. Anchor Type
receives the AS_CHARACTER value. The text frame is therefore inserted directly in the text flow and
behaves like a character. It can, for example, be moved into the next line if a line break occurs. The
LI NE_TOP value of the Vert Ori ent property ensures that the upper edge of the text frame is at
the same height as the upper edge of the character.

Once initialization is complete, the text frame is finally inserted in the text document using a call
fromi nsert Text Cont ent .

Chapter 6 Text Documents 109

To edit the content of a text frame, the user uses the Text Cur sor, which has already been
mentioned numerous times and is also available for text frames.

Di m Doc As Obj ect

Di m Text Tabl es As Obj ect
Di m Cursor As Obj ect

Di m Frane As Obj ect

Di m FranmeCursor As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Cursor = Doc. Text.creat eText Cursor ()
Frame = Doc. creat el nstance("com sun. star.text. Text Frame")

Frame. Wdth = 3000
Frame. Hei ght = 1000

Doc. Text . i nsert Text Cont ent (Cursor, Frane, Fal se)

FrameCur sor = Frane. cr eat eText Cur sor ()

FraneCur sor. char Wi ght = com sun. st ar. awt . Font Wi ght . BOLD

FrameCur sor . par aAdj ust = com sun. st ar. styl e. Par agr aphAdj ust . CENTER
FrameCursor. String = "This is a small Test!"

The example creates a text frame, inserts this in the current document and opens a Text Cur sor
for the text frame. This cursor is used to set the frame font to bold type and to set the paragraph
orientation to centered. The text frame is finally assigned the “This is a small test!” string.

Text Fields

Text fields are Text Cont ent objects because they provide additional logic extending beyond pure
text. Text fields can be inserted in a text document using the same methods as those used for other
Text Cont ent objects:

Di m Doc As (bj ect

Di m Dat eTi meFi el d As Obj ect

Di m Cursor As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Cursor = Doc. Text.creat eText Cursor ()

Dat eTi neFi el d = Doc. creat el nstance("com sun. star.text. TextFi el d. Dat eTi ne")
Dat eTi neFi el d. | sFi xed = Fal se

Dat eTi neFi el d. | sDate = True

Doc. Text . i nsert Text Cont ent (Cursor, DateTi meFi el d, Fal se)

The example inserts a text field with the current date at the start of the current text document. The
True value of the | sDat e property results in only the date and not time being displayed. The

Fal se value for | sFi xed ensures that the date is automatically updated when the document is
opened.

While the type of a field in VBA is specified by a parameter of the Docunent . Fi el ds. Add method, the
name of the service that is responsible for the field type in question defines it in StarOffice Basic.

110 StarOffice™ 7 Basic Programmer's Guide

In the past, text fields were accessed using a whole range of methods that StarOffice made available in the
old Sel ecti on object (for example | nsert Fi el d, Del et eUser Fi el d, Set Cur Fi el d).

In StarOffice 7, the fields are administered using an object-oriented concept. To create a text field, a text
field of the type required should first be created and initialized using the properties required. The text field
is then inserted in the document using the i nser t Text Cont ent method. A corresponding source text
can be seen in the previous example. The most important field types and their properties are described in
the following sections.

In addition to inserting text fields, searching a document for the fields can also be an important
task. The following example shows how all text fields of a text document can be traversed in a loop
and checked for their relevant type.

Di m Doc As Obj ect

Di m Text Fi el dEnum As Obj ect
Di m Text Fiel d As Obj ect
Dim | As |nteger

Doc = St ar Deskt op. Cur r ent Conponent
Text Fi el dEnum = Doc. get Text Fi el ds. cr eat eEnuner ati on
Wi | e Text Fi el dEnum hasMor eEl enent s()

Text Fi el d = Text Fi el dEnum next El enent ()

I f TextFi el d. supportsService("com sun. star.text. TextFi el d. Dat eTi ne") Then
MsgBox "Date/tinme"

El sel f TextFi el d. supportsServi ce("com sun. star.text. TextFi el d. Annotati on") Then
MsgBox " Annot at i on"

El se
MsgBox " unknown"

End | f

Wend

The starting point for establishing the text fields present is the Text Fi el ds list of the document
object. The example creates an Enuner at i on object on the basis of this list, with which all text
fields can be queried in turn in a loop. The text fields found are checked for the service supported
using the support sSer vi ce method. If the field proves to be a date/time field or an annotation,
then the corresponding field type is displayed in an information box. If on the other hand, the
example encounters another field, then it displays the information “unknown”.

Below, you will find a list of the most important text fields and their associated properties. A
complete list of all text fields is provided in the API reference in the

com sun. star.text. Text Fi el d module. (When listing the service name of a text field,
uppercase and lowercase characters should be used in StarOffice Basic, as in the previous
example.)

Chapter 6 Text Documents 111

Number of Pages, Words and Characters

The text fields

= comsun. star.text. Text Fi el d. PageCount

= comsun.star.text. TextFi el d. Wr dCount

= comsun.star.text. TextFi el d. Charact er Count

return the number of pages, words or characters of a text. They support the following property:

= Numberi ngType (const) - numbering format (guidelines in accordance with constants from
com sun. star. styl e. Nunberi ngType).

Current Page

The number of the current page can be inserted in a document using the
com sun. star.text. Text Fi el d. PageNumnber text field. The following properties can be
specified:

= Numberi ngType (const) - number format (guidelines in accordance with constants from
com sun. star. styl e. Nunberi ngType).

« Ofset (short) - offset added to the number of pages (negative specification also possible).

The following example shows how the number of pages can be inserted into the footer of a
document.

Di m Doc As (bj ect

Di m Dat eTi meFi el d As Obj ect
Di m PageStyl es As Obj ect

Di m St dPage As Obj ect

Di m Foot er Cur sor As Obj ect
Di m PageNunber As Obj ect

Doc = St ar Deskt op. Curr ent Conponent

PageNunber = Doc. creat el nst ance("com sun. star.text. Text Fi el d. PageNunber ")
PageNunber . Nunberi ngType = com sun. star. styl e. Nunberi ngType. ARABI C

PageStyl es = Doc. Styl eFami | i es. get ByNane(" PageSt yl es")

St dPage = PageStyl es("Defaul t")
St dPage. Footerl sOn = True

Foot er Cur sor = St dPage. Foot er Text Left. Text. cr eat eText Cur sor ()
St dPage. Foot er Text Left . Text . i nsert Text Cont ent (Foot er Cur sor, PageNunber, Fal se)

The example first creates a text field which supports the

com sun. st ar. text. Text Fi el d. PageNunber service. Since the header and footer lines are
defined as part of the page templates of StarOffice, this is initially established using the list of all
PageStyl es.

To ensure that the footer line is visible, the Foot er | sOn property is set to Tr ue. The text field is then
inserted in the document using the associated text object of the left-hand footer line.

112 StarOffice™ 7 Basic Programmer's Guide

Annotations

Annotation fields (com sun. st ar. t ext. Text Fi el d. Annot at i on) can be seen by means of a
small yellow symbol in the text. Clicking on this symbol opens a text field, in which a comment on
the current point in the text can be recorded. An annotation field has the following properties.

= Author (String) - name of author.
= Content (String) -comment text.

= Date (Date) -date on which annotation is written.

Date / Time

A date /time field (com sun. st ar. t ext. Text Fi el d. Dat eTi ne) represents the current date
or the current time. It supports the following properties:

= |sFixed (Bool ean) —if Tr ue, the time details of the insertion remain unchanged, if False,
these are updated each time the document is opened.

= |sDate (Bool ean) —if Tr ue, the field displays the current date, otherwise the current time.

= DateTi neVal ue (struct) —current content of field (com sun. star. util . DateTi ne
structure)

= Nunber Format (const) - formatin which the time or date is depicted.

Chapter Name / Number

The name of the current chapter is available through a text field of the
com sun. star.text. Text Fi el d. Chapt er type. The form can be defined using two
properties.

= ChapterFormat (const) —determines whether the chapter name or the chapter number is
depicted (in accordance with com sun. st ar. t ext . Chapt er For nat)

= Level (Integer) —determines the chapter level whose name and/or chapter number is to
be displayed. The value 0 stands for highest level available.

Chapter 6 Text Documents 113

Bookmarks

Bookmarks (Service com sun. st ar . t ext . Bookmar k) are Text Cont ent objects. Bookmarks are
created and inserted using the concept already described previously:

Di m Doc As (bj ect
Di m Booknark As Obj ect
Di m Cursor As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Cursor = Doc. Text.createText Cursor ()

Bookmar k = Doc. creat el nstance("com sun. st ar.text.Bookmark")
Bookmar k. Name = "My bookmar ks"
Doc. Text . i nsert Text Cont ent (Cursor, Booknmark, True)

The example creates a Cur sor, which marks the insert position of the bookmark and then the
actual bookmark object (Bookmar k). The bookmark is then assigned a name and is inserted in the
document through i nsert Text Cont ent at the cursor position.

The bookmarks of a text are accessed through a list called Bookmar ks. The bookmarks can either
be accessed by their number or their name.

The following example shows how a bookmark can be found within a text, and a text inserted at its
position.

Di m Doc As (bj ect

Di m Bookmark As bj ect

Di m Cursor As Obj ect

Doc = St ar Deskt op. Curr ent Conponent

Booknar k = Doc. Booknar ks. get ByNane(" My booknmar ks")

Cursor = Doc. Text. creat eText Cur sor ByRange(Bookmar k. Anchor)
Cursor. String = "Here is the bookmark"

In this example, the get ByNane method is used to find the bookmark required by means of its
name. The cr eat eText Cur sor ByRange call then creates a Cur sor, which is positioned at the
anchor position of the bookmark. The cursor then inserts the text required at this point.

114 StarOffice™ 7 Basic Programmer's Guide

CHAPTER [

Spreadsheet Documents

StarOffice Basic provides an extensive interface for program-controlled creation and editing of
spreadsheets. This chapter describes how to control the relevant services, methods and properties
of spreadsheet documents.

The first section addresses the basic structure of spreadsheet documents and shows you how to
access and to edit the contents of individual cells.

The second section concentrates on how to edit spreadsheets efficiently by focusing on cell areas
and the options for searching and replacing cell contents.

‘ The Range object allows you to address any table area and has been extended in the new API.

The Structure of Table-Based Documents
(Spreadsheets)

The document object of a spreadsheet is based on the

com sun. st ar. sheet. Spreadsheet Docunent service. Each of these documents may contain
several spreadsheets. In this guide, a table-based document or spreadsheet document is the entire
document, whereas a spreadsheet (or sheet for short) is a sheet (table) in the document.

Different terminology for spreadsheets and their content is used in VBA and StarOffice Basic. Whereas the
document object in VBA is called a Workbook and its individual pages Worksheets, they are called
SpreadsheetDocument and Sheet in StarOffice Basic.

Spreadsheets

You can access the individual sheets of a spreadsheet document through the Sheet s list.
The following examples show you how to access a sheet either through its number or its name.

Example 1: access by means of the number (numbering begins with 0)

Di m Doc As (bj ect
Di m Sheet As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheets (0)

115

Example 2: access by means of the name

Di m Doc As Obj ect
Di m Sheet As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheets. get ByNanme(" Sheet 1")

In the first example, the sheet is accessed by its number (counting begins at 0). In the second
example, the sheet is accessed by its name and the get ByNanme method.

The Sheet object that is obtained by the get By Nane method supports the
com sun. st ar. sheet. Spreadsheet service. In addition to providing several interfaces for
editing the content, this service provides the following properties:

= |sVisible (Bool ean) —the spreadsheet is visible.

= PageStyle (String) —name of the page template for the spreadsheet.

Creating, Deleting and Renaming Sheets

The Sheet s list for a spr eadsheet document is also used to create, delete, and rename
individual sheets. The following example uses the hasByName method to check if a sheet called
MySheet exists. If it does, the method determines a corresponding object reference by using the
get By Nane method and then saves the reference in a variable in Sheet . If the corresponding
sheet does not exist, it is created by the cr eat el nst ance call and inserted in the spreadsheet
document by the i nsert ByNane method.

Di m Doc As (bj ect
Di m Sheet As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)

| f Doc. Sheets. hasByNane(" MySheet") Then
Sheet = Doc. Sheet s. get ByNanme(" MySheet ")

El se
Sheet = Doc. creat el nstance("com sun. st ar. sheet. Spreadsheet")
Doc. Sheet s. i nsert ByName(" MySheet ", Sheet)

End | f

The get ByNane and i nser t ByName methods are from the
com sun. st ar. cont ai ner. XnaneCont ai ner interface as described in Chapter 4.

Rows and Columns

Each sheet contains a list of its rows and columns. These are available through the Rows and
Col umms properties of the spreadsheet object and support the
com sun. star.tabl e. Tabl eCol unms and/or com sun. st ar. t abl e. Tabl eRows services.

The following example creates two objects that reference the first row and the first column of a
sheet and stores the references in the Fi r st Col and Fi r st Rowobject variables.

116 StarOffice™ 7 Basic Programmer's Guide

Di m Doc As Obj ect

Di m Sheet As Obj ect
Di m Fi rst Row As Obj ect
Di m FirstCol As Object

Doc = St ar Deskt op. Cur r ent Conponent
Sheet = Doc. Sheet s(0)

Fi rst Col = Sheet. Col utms(0)
Fi r st Row = Sheet. Rows(0)

The column objects support the com sun. st ar. t abl e. Tabl eCol umm service that has the
following properties:

= Wdth (long) —width of a column in hundredths of a millimeter.

= Optinmal Wdth (Bool ean) —sets a column to its optimum width.

= |sVisible (Bool ean) —displays a column.

= |IsStart O NewPage (Bool ean) —when printing, creates a page break before a column.

The width of a column is only optimized when the Opt i mal W dt h property is set to Tr ue. If the
width of an individual cell is changed, the width of the column that contains the cell is not
changed. In terms of functionality, Opt i mal W dt h is more of a method than a property.

The row objects are based on the com sun. st ar. t abl e. RowCol unm service that has the
following properties:

= Height (long) - height of the row in 100ths of a millimeter.

= Optinmal Hei ght (Bool ean) - sets the row to its optimum height.

= |IsVisible (Bool ean) —displays the row.

= IsStart O NewPage (Bool ean) —when printing, creates a page break before the row.

If the Opt i mal Hei ght property of a row is set to the Tr ue, the row height changes automatically
when the height of a cell in the row is changed. Automatic optimization continues until the row is

assigned an absolute height through the Hei ght property.

Chapter 7 Spreadsheet Documents 117

The following example activates the automatic height optimization for the first five rows in the
sheet and makes the second column invisible.

Di m Doc As (bj ect
Di m Sheet As Obj ect
Di m Row As Obj ect
Di m Col As Object
Dim | As |Integer

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)

For I =0 To 4

Row = Sheet . Rows(1)

Row. Opt i mal Hei ght = True
Next |

Col = Sheet. Col ums(1)
Col .IsVisible = Fal se

The Rows and Col umms lists can be accessed through an index in StarOffice Basic. Unlike in VBA, the
first column has the index 0 and not the index 1.

Inserting and Deleting Rows and Columns

The Rows and Col urms objects of a sheet can access existing rows and columns as well as insert
and delete them.

Di m Doc As Obj ect
Di m Sheet As Obj ect
Di m NewCol umm As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)

Sheet . Col ums. i nsert Byl ndex(3, 1)
Sheet . Col umms. r enoveByl ndex(5, 1)

This example uses the i nsert Byl ndex method to insert a new column into the fourth column
position in the sheet (index 3 - numbering starts at 0). The second parameter specifies the number
of columns to be inserted (in this example: one).

The r enoveByl ndex method deletes the sixth column (index 5). Again, the second parameter
specifies the number of columns that you want to delete.

The methods for inserting and deleting rows use the Rows object function in the same way as the
methods shown for editing columns using the Col urms object.

118 StarOffice™ 7 Basic Programmer's Guide

Cells

A spreadsheet consists of a two-dimensional list containing cells. Each cell is defined by its X and
Y-position with respect to the top left cell which has the position (0,0).

The following example creates an object that references the top left cell and inserts a text in the cell:

Di m Doc As (bj ect
Di m Sheet As Obj ect
Dim Cell As Object

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)

Cel | = Sheet. getCel | ByPosition(0, 0)
Cell.String = "Test"

In addition to numerical coordinates, each cell in a sheet has a name, for example, the top left cell
(0,0) of a spreadsheet is called Al. The letter A stands for the column and the number 1 for the row.
It is important that the name and position of a cell are not confused because row counting for names
begins with 1 but the counting for position begins with 0.

In StarOffice, a table cell can be empty or contain text, numbers, or formulas. The cell type is not
determined by the content that is saved in the cell, but rather the object property which was used
for its entry. Numbers can be inserted and called up with the Val ue property, text with the
St ri ng property, and formulas with the For mul a property.

Di m Doc As (bj ect

Di m Sheet As Obj ect

Dim Cell As Object

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)

Cel | = Sheet. get Cel | ByPosition(0, 0)
Cel | . Val ue = 100

Cel | = Sheet. getCel | ByPosition(0, 1)
Cell.String = "Test"

Cel | = Sheet.getCel | ByPosition(0, 2)
Cell.Formula = "=A1"

The example inserts one number, one text, and one formula in the fields Al to A3.

The Val ue, St ri ng, and For nul a properties supersede the Put Cel | method for setting the values of a
table cell.

StarOffice treats cell content that is entered using the St r i ng property as text, even if the content
is a number. Numbers are left-aligned in the cell instead of right-aligned. You should also note the
difference between text and numbers when you use formulas:

Chapter 7 Spreadsheet Documents 119

Di m Doc As Obj ect
Di m Sheet As Obj ect
Dim Cell As Object

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)

Cel | = Sheet.getCel | ByPosition(0, 0)
Cel | . Val ue = 100

Cel | = Sheet.getCel | ByPosition(0, 1)
Cell.String = 1000

Cel | = Sheet.getCel |l ByPosition(0, 2)
Cel | . Formul a = "=A1+A2"

MsgBox Cel | . Val ue

Although cell Al contains the value 100 and cell A2 contains the value 1000, the A1+A2 formula
returns the value 100. This is because the contents of cell A2 were entered as a string and not as a
number.

To check if the contents of a cell contains a number or a string, use the Type property:

Di m Doc As (bj ect
Di m Sheet As Obj ect
Dim Cell As Object

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)
Cel | = Sheet. getCel | ByPosition(1,1)

Cel I . Val ue = 1000

Sel ect Case Cel | . Type

Case com sun. star.tabl e. Cel | Cont ent Type. EMPTY
MsgBox "Content: Enpty"

Case com sun. star.tabl e. Cel | Cont ent Type. VALUE
MsgBox "Content: Val ue"

Case com sun. star.tabl e. Cel | Cont ent Type. TEXT
MsgBox "Content: Text"

Case com sun. star.tabl e. Cel | Cont ent Type. FORMJLA
MsgBox "Content: Formul a"

End Sel ect

The Cel | . Type property returns a value for the com sun. st ar. t abl e. Cel | Cont ent Type
enumeration which identifies the contents type of a cell. The possible values are:

s EMPTY -no value
= VALUE - number
s TEXT -strings

=« FORMULA - formula

120 StarOffice™ 7 Basic Programmer's Guide

Inserting, Deleting, Copying and Moving Cells

In addition to directly modifying cell content, StarOffice Calc also provides an interface that allows
you to insert, delete, copy, or merge cells. The interface

(com sun. st ar. sheet . XRangeMovenent) is available through the spreadsheet object and
provides four methods for modifying cell content.

Thei nsert Cel | method is used to insert cells into a sheet.

Di m Doc As Obj ect
Di m Sheet As Obj ect
Di m Cel | RangeAddr ess As New com sun. star.tabl e. Cel | RangeAddr ess

Doc = St ar Deskt op. Cur r ent Conponent
Sheet = Doc. Sheet s(0)

Cel | RangeAddr ess. Sheet = 0

Cel | RangeAddress. Start Colutm = 1
Cel | RangeAddr ess. Start Row = 1
Cel | RangeAddr ess. EndCol utm = 2
Cel | RangeAddr ess. EndRow = 2

Sheet . i nsert Cel | s(Cel | RangeAddr ess, com sun. star. sheet. Cel | | nsert Mode. DON)

This example inserts a cells range that is two rows by two columns in size into the second column
and row (each bear the number 1) of the first sheet (number 0) in the spreadsheet. Any existing
values in the specified cell range are are moved below the range.

To define the cell range that you want to insert, use the

com sun. star.tabl e. Cel | RangeAddr ess structure. The following values are included in this
structure:

= Sheet (short) —number of the sheet (numbering begins with 0).

= StartColumm (I ong) —firstcolumn in the cell range (numbering begins with 0).

= StartRow (| ong) -first row in the cell range (numbering begins with 0).

= EndCol unm (I ong) - final column in the cell range (humbering begins with 0).

= EndRow (I ong) - final row in the cell range (numbering begins with 0).

The completed Cel | RangeAddr ess structure must be passed as the first parameter to the

i nsert Cel | s method. The second parameter of i nsert Cel | s contains a value of the com sun.
star.sheet. Cel | | nsert Mode enumeration and defines what is to be done with the values that
are located in front of the insert position. The Cel | | nser t Mode enumeration recognizes the
following values:

= NONE - the current values remain in their present position.

= DOWN- the cells at and under the insert position are moved downwards.

= Rl GHT - the cells at and to the right of the insert position are moved to the right.

= ROWS - the rows after the insert position are moved downwards.

= COLUMNS - the columns after the insert position are moved to the right.

Chapter 7 Spreadsheet Documents 121

The r enoveRange method is the counterpart to the i nsert Cel | s method. This method deletes
the range that is defined in the Cel | RangeAddr ess structure from the sheet.

Di m Doc As Obj ect
Di m Sheet As Obj ect
Di m Cel | RangeAddr ess As New com sun. star.tabl e. Cel | RangeAddr ess

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)

Cel | RangeAddr ess. Sheet = 0

Cel | RangeAddr ess. Start Col utm = 1
Cel | RangeAddress. Start Row = 1
Cel | RangeAddr ess. EndCol umm = 2
Cel | RangeAddr ess. EndRow = 2

Sheet . r enroveRange(Cel | RangeAddr ess, com sun. st ar. sheet. Cel | Del et eMbde. UP)

This example removes the B2:C3 cell range from the sheet and then shifts the underlying cells up
by two rows. The type of removal is defined by one of the following values from the
com sun. star. sheet. Cel | Del et eMode enumeration:

= NONE - the current values remain in their current position.

= UP-the cells at and below the insert position are moved upwards.

= LEFT - the cells at and to the right of the insert position are moved to the left.
= ROWS - the rows after the insert position are moved upwards.

= COLUMWNS - the columns after the insert position are moved to the left.

The XRangeMovenent interface provides two additional methods for moving (noveRange) or
copying (copyRange) cell ranges. The following example moves the B2;C3 range so that the range
starts at position A6:

Di m Doc As Obj ect

Di m Sheet As Obj ect

Di m Cel | RangeAddr ess As New com sun. star.tabl e. Cel | RangeAddr ess
Di m Cel | Address As New com sun. star.tabl e. Cel | Addr ess

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)

Cel | RangeAddr ess. Sheet = 0

Cel | RangeAddr ess. Start Col utm = 1
Cel | RangeAddr ess. Start Row = 1
Cel | RangeAddr ess. EndCol unmm = 2
Cel | RangeAddr ess. EndRow = 2

Cel | Addr ess. Sheet = 0
Cel | Addr ess. Colum = 0
Cel | Addr ess. Row = 5

Sheet . nroveRange(Cel | Addr ess, Cel | RangeAddr ess)

122 StarOffice™ 7 Basic Programmer's Guide

In addition to the Cel | RangeAdr ess structure, the noveRange method expects a
com sun. star.tabl e. Cel | Addr ess structure to define the origin of the move’s target region.
The Cel | Addr ess method provides the following values:

= Sheet (short) —number of the spreadsheet (hnumbering begins with 0).
= Columm (| ong) — number of the addressed column (numbering begins with 0).
= Row (Il ong) —number of the addressed row (numbering begins with 0).

The cell contents in the target range are always overwritten by the noveRange method.
Unlike in the | nsert Cel | s method , a parameter for performing automatic moves is not
provided in the r enbveRange method.

The copyRange method functions in the same way as the moveRange method, except that
copyRange inserts a copy of the cell range instead of moving it.

In terms of their function, the StarOffice Basici nsert Cel | ,r enbveRange, and copyRange
methods are comparable with the VBA Range. | nsert, Range. Del et e ,and Range. Copy methods.
Whereas in VBA, the methods are applied to the corresponding Range object, in StarOffice Basic they

are applied to the associated Sheet object.

Formatting

A spreadsheet document provides properties and methods for formatting cells and pages.

Cell Properties

There are numerous options for formatting cells, such as specifying the font type and size for text.
Each cell supports the com sun. st ar. styl e. Charact er Properti es and

com sun. star. styl e. ParagraphProperties services, the main properties of which are
described in Chapter 6 (Text Documents). Special cell formatting is handled by the

com sun. star.tabl e. Cel | Properti es service. The main properties of this service are
described in the following sections.

You can apply all of the named properties to individual cells and to cell ranges.

The Cel | Properti es object in the StarOffice APl is comparable with the | nt eri or object from VBA
which also defines cell-specific properties.

Background Color and Shadows

The com sun. star.tabl e. Cel | Properti es service provides the following properties for
defning background colors and shadows:

= Cel | BackCol or (Long) - background color of the table cell.
= |sCell BackgroundTransparent (Bool ean) - setsthe background color to transparent.

= ShadowFormat (struct) —specifies the shadow for cells (structure in accordance with
com sun. star.tabl e. ShadowFor mat).

Chapter 7 Spreadsheet Documents 123

The com sun. st ar. t abl e. ShadowFor mat structure and the detailed specifications for cell
shadows have the following structure:

= Location (enunj - position of shadow (value from the
com sun. star.tabl e. ShadowLocat i on structure).

= ShadowW dth (Short) -size of shadow in hundredths of a millimeter.
= | sTransparent (Bool ean) - setsthe shadow to transparent.
= Col or (Long) - color of shadow.

The following example writes the number 1000 to the B2 cell, changes the background color to red
using the Cel | BackCol or property, and then creates a light gray shadow for the cell that is
moved 1 mm to the left and down.

Di m Doc As Obj ect

Di m Sheet As Obj ect

Dim Cell As Object

Di m ShadowFor mat As New com sun. st ar. t abl e. Shadowror nat

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)
Cel | = Sheet. get Cel | ByPosition(1,1)

Cel | . Val ue = 1000
Cel | . Cel | BackCol or = RGB(255, 0, 0)

ShadowFor mat . Locati on = com sun. star.tabl e. ShadowLocati on. BOTTOM Rl GHT
ShadowFor mat . ShadowW dt h = 100
Shadowror mat . Col or = RGB(160, 160, 160)

Cel | . ShadowFor mat = ShadowFor nat

Justification

StarOffice provides various functions that allow you to change the justification of a text in a table
cell.

The following properties define the horizontal and vertical justification of a text:

» HoriJustify (enun) - horizontal justification of the text (value from
com sun. star.table. Cell Hori Justify)

» VertJustify (enun) -verticaljustification of the text (value from
com sun. star.table. Cell VertJustify)

= Orientation (enun) - orientation of text (value in accordance with
comsun.star.table.Cell Oientation)

= | sText Wapped (Bool ean) - permits automatic line breaks within the cell

= Rot at eAngl e (Long) - angle of rotation of text in hundredths of a degree

124 StarOffice™ 7 Basic Programmer's Guide

The following example shows how you can "stack" the contents of a cell so that the individual
characters are printed one under another in the top left corner of the cell. The characters are not
rotated.

Di m Doc As (bj ect
Di m Sheet As Obj ect
Dim Cel |l As Object

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)
Cel | = Sheet. getCel | ByPosition(1,1)

Cel | . Val ue = 1000

Cel | . HoriJustify com sun. star.tabl e. Cel | Hori Justify. LEFT
Cell.VertJustify = comsun.star.table. CellVertJustify. TOP
Cell.Oientation = comsun.star.table. Cell Oientati on. STACKED

Number, Date and Text Format

StarOffice provides a whole range of predefined date and time formats. Each of these formats has
an internal number that is used to assign the format to cells using the Nurmber For mat property.
StarOffice provides the quer yKey and addNew methods so that you can access existing number
formats as well as create your own number formats. The methods are accessed through the
following object call:

Nunber For mat s = Doc. Nunber For mat s

A format is specified using a format string that is structured in a similar way to the format function
of StarOffice Basic. However there is one major difference: whereas the command format expects
English abbreviations and decimal points or characters as thousands separators, the country-
specified abbreviations must be used for the structure of a command format for the
NumberFormats object.

The following example formats the B2 cell so that numbers are displayed with three decimal places
and use commas as a thousands separator.

Di m Doc As (bj ect

Di m Sheet As Obj ect

Dim Cel |l As Object

Di m Nunber For mats As Obj ect

Di m Nunber Format String As String

Di m Nunber Format1d As Long

Di m Local Settings As New com sun. star. | ang. Local e

Doc = St ar Deskt op. Cur r ent Conponent
Sheet = Doc. Sheet s(0)

Cel | = Sheet.getCel | ByPosition(1,1)
Cel | . Val ue = 23400. 3523565

Local Setti ngs. Language = "en"
Local Settings. Country = "us"

Chapter 7 Spreadsheet Documents 125

Nunber For mat s = Doc. Nunber For mat s
Nunber For mat String = "#, ##0. 000"

Nunber For nat | d = Nunber For nat s. quer yKey(Nunber For mat Stri ng, Local Settings, True)
I f NunberFormatld = -1 Then

Nurber For mat | d = Nunber For mat s. addNew(Nunber For mat St ri ng, Local Setti ngs)
End | f

MsgBox Nunber For nat | d
Cel | . Nunber For mat = Nunber For mat | d

The Format Cells dialog in StarOffice Calc provides an overview of the different formatting
options for cells.

Page Properties

Page properties are the formatting options that position document content on a page as well as
visual elements that are repeated page after page. These include

= Paper formats
= Page margins
= Headers and footers.

The procedure for defining page formats differs from other forms of formatting. Whereas cell,
paragraph, and character element can be directly, page formats can also be defined and indirectly
applied using page styles. For example, headers or footers are added to the page style.

The following sections describe the main formatting options for spreadsheet pages. Many of the
styles that are described are also available for text documents. The page properties that are valid
for both types of documents are defined in the com sun. st ar. styl e. PageProperties
service. The page properties that only apply to spreadsheet documents are defined in the

com sun. st ar. sheet. Tabl ePageSt yl e service.

The page properties (page margins, borders, and so on) for a Microsoft Office document are defined by
means of a PageSet up object at the Wor ksheet object (Excel) or Docunment object (Word) level.

In StarOffice, these properties are defined using a page style which in turn is linked to the associated
document.

Page Background

The com sun. star. styl e. PagePr operti es service defines the following properties of a
pages background:

= BackCol or (I ong) - color of background
= BackG aphi cURL (String) — URL of the background graphics that you want to use
= BackGraphicFilter (String) —name of the filter for interpreting the background graphics

= BackG aphi cLocation (Enun) - position of the background graphics (value according to
com sun. star. styl e. Gaphi cLocati on enumeration)

= BackTransparent (Bool ean) - makes the background transparent

126 StarOffice™ 7 Basic Programmer's Guide

Page Format

The page format is defined using the following properties of the
com sun. star. styl e. PageProperti es service:

= |slLandscape (Bool ean) —landscape format

= Wdth (Ilong) -width of page in hundredths of a millimeter

= Height (long) - height of page in hundredths of a millimeter

= PrinterPaperTray (String) —name of the printer paper tray that you want to use

The following example sets the page size of the "Default" page style to the DIN A5 landscape
format (height 14.8 cm, width 21 cm):

Di m Doc As (bj ect

Di m Sheet As Obj ect

Dim Styl eFam | i es As Obj ect
Di m PageStyl es As Obj ect

Di m Def Page As Obj ect

Doc = St ar Deskt op. Cur r ent Conponent
StyleFami | ies = Doc. Styl eFami | i es

PageStyl es = Styl eFami | i es. get ByNanme(" PageSt yl es")
Def Page = PageStyl es. get ByNanme(" Defaul t")

Def Page. | sLandscape = True
Def Page. Wdt h = 21000
Def Page. Hei ght = 14800

Page Margin, Border and Shadow

The com sun. st ar. styl e. PagePr operti es service provides the following properties for
adjusting page margins as well as borders and shadows:

= LeftMargin (Iong) —width of the left hand page margin in hundredths of a millimeter

= RightMargi n (| ong) —width of the right hand page margin in hundredths of a millimeter.
= TopMargin (| ong) —width of the top page margin in hundredths of a millimeter

= Bottomvargin (I ong) —width of the bottom page margin in hundredths of a millimeter

= LeftBorder (struct) —specifications for left-hand line of page border
(com sun. st ar. t abl e. Bor der Li ne structure)

= RightBorder (struct) - specifications for right-hand line of page border
(com sun. st ar. t abl e. Bor der Li ne structure)

= TopBorder (struct) —specifications for top line of page border
(com sun. st ar. t abl e. Bor der Li ne structure)

= BottonBorder (struct) - specifications for bottom line of page border
(com sun. st ar. t abl e. Bor der Li ne structure)

Chapter 7 Spreadsheet Documents 127

= LeftBorderDi stance (Il ong) - distance between left-hand page border and page content
in hundredths of a millimeter

= RightBorderDi stance (| ong) - distance between right-hand page border and page
content in hundredths of a millimeter

= TopBorderDi stance (| ong) - distance between top page border and page content in
hundredths of a millimeter

= BottonBorderDi stance (I ong) - distance between bottom page border and page content
in hundredths of a millimeter

= ShadowFor mat (struct) —specifications for shadow of content area of page
(com sun. st ar. t abl e. Shadowor mat structure)

The following example sets the left and right-hand borders of the "Default" page style to 1
centimeter.

Di m Doc As Obj ect

Di m Sheet As Obj ect

Dim Styl eFami i es As Object
Di m PageStyl es As Obj ect

Di m Def Page As Obj ect

Doc = St ar Deskt op. Curr ent Conponent

Styl eFam |ies = Doc. Styl eFam | i es

PageStyl es = Styl eFani | i es. get ByNane(" PageStyl es")
Def Page = PageStyl es. get ByNane(" Defaul t")

Def Page. Left Margi n = 1000

Def Page. Ri ght Margi n = 1000

Headers and Footers

The headers and footers of a document form part of the page properties and are defined using the
com sun. star. styl e. PageProperti es service. The properties for formatting headers are:

= Header | sOn (Bool ean) - header is activated

= HeaderLeftMargi n (| ong) —distance between header and left-hand page margin in
hundredths of a millimeter.

= Header Ri ght Margi n (I ong) - distance between header and right-hand page margin in
hundredths of a millimeter

= Header BodyDi st ance (| ong) - distance between header and main body of document in
hundredths of a millimeter

= Header Hei ght (1 ong) -heightof header in hundredths of a millimeter
= Header| sDynam cHei ght (Bool ean) - height of header is automatically adapted to content

= Header LeftBorder (struct) -details of the left-hand border of frame around header
(com sun. st ar. t abl e. Bor der Li ne structure)

128 StarOffice™ 7 Basic Programmer's Guide

Header Ri ght Border (struct) - details of the right-hand border of frame around header
(com sun. st ar. t abl e. Bor der Li ne structure)

Header TopBor der (struct) - details of the top line of the border around header
(com sun. st ar. t abl e. Bor der Li ne structure)

Header Bot t onBor der (struct) - details of the bottom line of the border around header
(com sun. st ar. t abl e. Bor der Li ne structure)

Header Lef t Bor der Di st ance (| ong) - distance between left-hand border and content of
header in hundredths of a millimeter

Header Ri ght Bor der Di st ance (| ong) - distance between right-hand border and content
of header in hundredths of a millimeter

Header TopBor der Di st ance (| ong) - distance between top border and content of header
in hundredths of a millimeter

Header Bot t onBor der Di st ance (| ong) - distance between bottom border and content of
header in hundredths of a millimeter

Header | sShar ed (Bool ean) —headers on even and odd pages have the same content (refer
to Header Text , Header Text Left and Header Text Ri ght)

Header BackCol or (| ong) - background color of header
Header BackG aphi cURL (String) —URL of the background graphics that you want to use

Header BackG aphi cFil ter (String) —name of the filter for interpreting the background
graphics for the header

Header BackG aphi cLocat i on (Enum) - position of the background graphics for the
header (value according to com sun. st ar. styl e. Graphi cLocat i on enumeration)

Header BackTr anspar ent (Bool ean) —shows the background of the header as transparent

Header ShadowFor mat (st ruct) - details of shadow of header
(com sun. st ar. t abl e. ShadowFor mat structure)

The properties for formatting footers are:

Foot er 1 sOn (Bool ean) - footer is activated

Foot er Left Margi n (| ong) - distance between footer and left-hand page margin in
hundredths of a millimeter

Foot er Ri ght Margi n (| ong) - distance between footer and right-hand page margin in
hundredths of a millimeter

Foot er BodyDi st ance (| ong) - distance between footer and main body of document in
hundredths of a millimeter

Foot er Hei ght (1 ong) - height of footer in hundredths of a millimeter

Foot er | sDynam cHei ght (Bool ean) - height of footer is adapted automatically to the content

Chapter 7 Spreadsheet Documents 129

= FooterlLeftBorder (struct) -details of left-hand line of border around footer
(com sun. st ar. t abl e. Bor der Li ne structure)

= FooterRi ght Border (struct) - details of right-hand line of border around footer
(com sun. st ar. t abl e. Bor der Li ne structure)

= FooterTopBorder (struct) -details of top line of border around footer
(com sun. st ar. t abl e. Bor der Li ne structure)

= Foot erBottonBorder (struct) -details of bottom line of border around footer
(com sun. st ar. t abl e. Bor der Li ne structure)

= FooterlLeftBorderDi stance (| ong) —distance between left-hand border and content of
footer in hundredths of a millimeter

= Foot er Ri ght Border Di st ance (| ong) - distance between right-hand border and content
of footer in hundredths of a millimeter

= Foot er TopBor der Di st ance (| ong) - distance between top border and content of footer in
hundredths of a millimeter

= Foot er Bott onBor der Di st ance (| ong) - distance between bottom border and content of
footer in hundredths of a millimeter

= FooterlsShared (Bool ean) —the footers on the even and odd pages have the same content
(refer to Foot er Text , Foot er Text Left und Foot er Text Ri ght).

= Foot erBackCol or (I ong) —background color of footer
= Foot er BackG aphi cURL (String) —URL of the background graphics that you want to use

= FooterBackG aphicFilter (String) —name of the filter for interpreting the background
graphics for the footer

= Foot er BackG aphi cLocati on (Enum) — position of background graphics for the footer
(value according to com sun. st ar. styl e. Graphi cLocat i on enumeration)

= Foot er BackTransparent (Bool ean) —shows the background of the footer as transparent

= Foot er ShadowFor mat (struct) — details of shadow of footer
(com sun. st ar. t abl e. Shadowror mat structure)

Changing the Text of Headers and Footers
The content of headers and footers in a spreadsheet is accessed through the following properties:

= LeftPageHeaderContent (Object) — content of headers for even pages
(com sun. st ar. sheet . Header Foot er Cont ent service)

= RightPageHeaderContent (Object) — content of headers for odd pages
(com sun. st ar. sheet . Header Foot er Cont ent service)

= LeftPageFooterContent (Object) — content of footers for even pages
(com sun. st ar. sheet . Header Foot er Cont ent service)

130 StarOffice™ 7 Basic Programmer's Guide

= RightPageFooterContent (Object) — content of footers for odd pages
(com sun. st ar. sheet . Header Foot er Cont ent service)

If you do not need to distinguish between headers or footers for odd and even pages (the
Foot er | sShar ed property is Fal se), then set the properties for headers and footers on odd
pages.

All the named objects return an object that supports the

com sun. st ar. sheet . Header Foot er Cont ent service. By means of the (non-genuine)

properties Lef t Text , Cent er Text , and Ri ght Text , this service provides three text elements for
the headers and footers of StarOffice Calc.

The following example writes the "Just a Test." value in the left-hand text field of the header from
the "Default" template.

Di m Doc As Obj ect

Di m Sheet As Obj ect

Dim Styl eFam | i es As Obj ect

Di m PageStyl es As (bj ect

Di m Def Page As bj ect

Di m HText As Obj ect

Di m HCont ent As (bj ect

Doc = St ar Deskt op. Curr ent Conponent
StyleFam |lies = Doc. Styl eFam |ies
PageStyl es = Styl eFam | i es. get ByNane(" PageSt yl es")
Def Page = PageStyl es. get ByNanme(" Defaul t")

Def Page. Header 1 sOn = True

HCont ent = Def Page. Ri ght PageHeader Cont ent
HText = HContent. Left Text

HText.String = "Just a Test."

Def Page. Ri ght PageHeader Cont ent = HCont ent

Note the last line in the example: Once the text is changed, the Text Cont ent object must be
assigned to the header again so that the change is effective.

Another mechanism for changing the text of headers and footers is available for text documents
(StarOffice Writer) because these consist of a single block of text. The following properties are

defined in the com sun. st ar. styl e. PagePr operti es service:

= Header Text ((Object) —textobject with content of the header
(com sun. st ar. t ext . XText service)

= Header Text Left (Object) - textobject with content of headers on left-hand pages
(com sun. st ar. t ext . XText service)

= Header Text Ri ght (Obj ect) —text object with content of headers on right-hand pages
(com sun. st ar. t ext. XText service)

= FooterText (Ohject) —textobject with content of the footer
(com sun. st ar. t ext. XText service)

= FooterTextlLeft (Object) —textobjectwith content of footers on left-hand pages
(com sun. st ar. t ext. XText service)

Chapter 7 Spreadsheet Documents 131

= FooterTextRi ght (Qhject) —textobject with content of footers on right-hand pages
(com sun. st ar. t ext. XText service)

The following example creates a header in the "Default" page style for text documents and adds the
text "Just a Test" to the header.

Di m Doc As (bj ect

Di m Sheet As Obj ect

Dim Styl eFami | i es As Object
Di m PageStyl es As Obj ect

Di m Def Page As Obj ect

Di m HText As Obj ect

Doc = St ar Deskt op. Curr ent Conponent

Styl eFam |ies = Doc. Styl eFam | i es

PageStyl es = Styl eFanmi | i es. get ByNane(" PageSt yl es")
Def Page = PageStyl es. get ByNane(" Defaul t")

Def Page. Header | sOn = True
HText = Def Page. Header Text

HText.String = "Just a Test."

In this instance, access is provided directly through the Header Text property of the page style
rather than the Header Foot er Cont ent object.

Centering (Spreadsheets Only)

The com sun. st ar. sheet . Tabl ePageSt yl e service is only used in StarOffice Calc page styles
and allows cell ranges that you want to printed to be centered on the page. This service provides
the following properties:

= CenterHorizontally (Bool ean) —table content is centered horizontally

= CenterVertically (Bool ean) —table content is centered vertically

Definition of Elements to be Printed (Spreadsheets Only)

When you format sheets, you can define whether page elements are visible. For this purpose, the
com sun. st ar. sheet . Tabl ePageSt yl e service provides the following properties:

= PrintAnnotations (Bool ean) - prints cell comments

= PrintGid (Bool ean) - prints the cell gridlines

= PrintHeaders (Bool ean) - prints the row and column headings

= PrintCharts (Bool ean) - prints charts contained in a sheet

= PrintObjects (Bool ean) - prints embedded objects

= PrintDrawi ng (Bool ean) - prints draw objects

= PrintDownFirst (Bool ean) —if the contents of a sheet extend across several pages, they
are first printed in vertically descending order, and then down the right-hand side.

= PrintFornul as (Bool ean) — prints the formulas instead of the calculated values

= PrintZeroVal ues (Bool ean) - prints the zero values

132 StarOffice™ 7 Basic Programmer's Guide

Editing Spreadsheet Documents Efficiently

Whereas the previous section described the main structure of spreadsheet documents, this section
describes the services that allow you to easily access individual cells or cell ranges.

Cell Ranges

In addition to an object for individual cells (com sun. st ar. t abl e. Cel | service), StarOffice
also provides objects that represent cell ranges. Such Cel | Range objects are created using the
get Cel | RangeByNare call of the spreadsheet object:

Di m Doc As (bj ect
Di m Sheet As Obj ect
Di m Cel | Range As (bj ect

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s. get ByNanme(" Sheet 1")
Cel | Range = Sheet . get Cel | RangeByNanme(" Al: C15")

A colon (:) is used to specify a cell range in a spreadsheet document. For example, A1:C15
represents all the cells in rows 1 to 15 in columns A, B, and C.

The location of individual cells in a cell range can be determined using the get Cel | ByPosi ti on
method, where the coordinates of the top left cell in the cell range is (0, 0). The following example
uses this method to create an object of cell C3.

Di m Doc As (bj ect

Di m Sheet As Obj ect

Di m Cel | Range As (bj ect
Dim Cell As Object

Doc = St ar Deskt op. Curr ent Conponent

Sheet = Doc. Sheet s. get ByNane(" Sheet 1")

Cel | Range = Sheet . get Cel | RangeByNanme(" B2: D4")
Cel |l = Cell Range. Get Cel | ByPosi tion(1, 1)

Formatting Cell Ranges

Just like individual cells, you can apply formatting to cell ranges using the

com sun. star.table. Cel | Properties service. For more information and examples of this
service, see the Formatting section.

Computing With Cell Ranges

You can use the conput eFunct i on method to perform mathematical operations on cell ranges.
The conput eFunct i on expects a constant as the parameter that describes the mathematical
function that you want to use. The associated constants are defined in the

com sun. st ar. sheet. Gener al Funct i on enumeration. The following values are available:

s SUM- sum of all numerical values

= COUNT - total number of all values (including non-numerical values)

Chapter 7 Spreadsheet Documents 133

= COUNTNUNS - total number of all numerical values

= AVERAGE - average of all numerical values

= MAX- largest numerical value

= M N-smallest numerical value

= PRODUCT - product of all numerical values

= STDEV - standard deviation

= VAR- variance

= STDEVP - standard deviation based on the total population
= VARP - variance based on the total population

The following example computes the average value of the A1:C3 range and prints the resultin a
message box:

Di m Doc As (bj ect
Di m Sheet As Obj ect
Di m Cel | Range As (bj ect

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheets. get ByNane(" Sheet 1")
Cel | Range = Sheet . get Cel | RangeByNane(" Al: C3")

MsgBox Cel | Range. conput eFuncti on(com sun. st ar . sheet . Gener al Funct i on. AVERAGE)

Deleting Cell Contents

The cl ear Cont ent s method simplifies the process of deleting cell contents and cell ranges in that
it deletes one specific type of content from a cell range.

The following example removes all the strings and the direct formatting information from the B2:C3
range.

Di m Doc As (bj ect

Di m Sheet As Obj ect

Di m Cel | Range As (bj ect
Di m Fl ags As Long

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s(0)
Cel | Range = Sheet . get Cel | RangeByNane(" B2: C3")

Fl ags = com sun. star. sheet. Cel | Fl ags. STRING + _
com sun. st ar. sheet. Cel | Fl ags. HARDATTR

Cel | Range. cl ear Cont ent s(Fl ags)

134 StarOffice™ 7 Basic Programmer's Guide

The flags specified in cl ear Cont ent s come from the com sun. st ar. sheet. Cel | Fl ags

constants list. This list provides the following elements;

» VALUE - numerical values that are not formatted as date or time

s DATETI ME — numerical values that are formatted as date or time

= STRI NG- strings

= ANNOTATI ON- comments that are linked to cells
= FORMULA - formulas

= HARDATTR- direct formatting of cells

= STYLES - indirect formatting

= OBJECTS - drawing objects that are connected to cells

= EDI TATTR- character formatting that only applies to parts of the cells

You can also add the constants together to delete different information using a call from

cl ear Cont ent s.

Searching and Replacing Cell Contents

Spreadsheet documents, like text documents, provide a function for searching and replacing.

The descriptor objects for searching and replacing in spreadsheet documents are not created
directly through the document object, but rather through the Sheet s list. The following is an

example of a search and replace process:

Di m Doc As Obj ect

Di m Sheet As Obj ect

Di m Repl aceDescri ptor As Obj ect
Dim | As I|nteger

Doc = St ar Deskt op. Cur r ent Conponent
Sheet = Doc. Sheet s(0)

Repl aceDescri ptor = Sheet. creat eRepl aceDescri ptor ()
Repl aceDescri ptor. SearchString = "is"
Repl aceDescri pt or . Repl aceString = "was"

For I = 0 to Doc. Sheets. Count - 1

Sheet = Doc. Sheets(1)

Sheet . Repl aceAl | (Repl aceDescri pt or)
Next |

This example uses the first page of the document to create a Repl aceDescri pt or and then

applies this to all pages in a loop.

Chapter 7 Spreadsheet Documents 135

136 StarOffice™ 7 Basic Programmer's Guide

CHAPTER 8

Drawings and Presentations

This chapter provides an introduction to the macro-controlled creation and editing of drawings.
The first section describes the structure of drawings, including the basic elements that contain
drawings. The second section addresses more complex editing functions, such as grouping,
rotating, and scaling objects.

Information about creating, opening, and saving drawings can be found in Chapter 5, Working with
StarOffice Documents.

The Structure of Drawings

StarOffice does not limit the number of pages in a drawing document. You can design each page
separately. There is also no limit to the number of drawing elements that you can add to a page.

This picture is slightly complicated by the presence of layers. By default, each drawing document
contains the Layout, Controls, and Dimension Lines layers and all drawing elements are added to the
Layout layer. You also have the option to add new layers. See the StarOffice Developer's Guide for
more information about drawing layers.

Pages

The pages of a drawing document are available through the Dr awPages list. You can access
individual pages either through their number or their name. If a document has one page and this is
called Slide 1, then the following examples are identical.

Example 1:

Di m Doc As Obj ect
Di m Page As Obj ect

Doc = St ar Deskt op. Cur r ent Conponent
Page = Doc. dr awPages(0)

137

Example 2:

Di m Doc As Obj ect
Di m Page As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages. get ByNanme(" Sl i de 1")

In example 1, the page is addressed by its number (counting begins at 0). In the second example,
the page is accessed by its name and the get By Name method.

DimsUl As String, sFilter As String
Dim sOptions As String
Di m oSheets As Obj ect, oSheet As Object

oSheets = oDocunent. Sheets

| f oSheets. hasByNane("Li nk") Then
oSheet = oSheets. get ByName("Li nk")
El se
oSheet = oDocunent. creat el nst ance("com sun. star. sheet. Spreadsheet")
oSheet s. i nsert ByNanme("Li nk", oSheet)
oSheet . | sVisible = Fal se
End |f

The preceding call returns a page object that supports the com sun. st ar . dr awi ng. Dr awPage
service. The service recognizes the following properties;

= BorderLeft (Long) - left-hand border in hundredths of a millimeter

= BorderRi ght (Long) -right-hand border in hundredths of a millimeter
= BorderTop (Long) —top border in hundredths of a millimeter

= BorderBottom (Long) - bottom border in hundredths of a millimeter

= Wdth (Long) - page width in hundredths of a millimeter

= Hei ght (Long) - page height in hundredths of a millimeter

= Number (Short) —number of pages (humbering begins at 1), read-only

= Orientation (Enun) - page orientation (in accordance with
com sun. star. vi ew. Paper Ori ent at i on enumeration)

If these settings are changed, then all of the pages in the document are affected.

138 StarOffice™ 7 Basic Programmer's Guide

The following example sets the page size of a drawing document which has just been opened to 20
x 20 centimeters with a page margin of 0.5 centimeters:

Di m Doc As (bj ect
Di m Page As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Page. Border Left = 500
Page. Bor der Ri ght = 500
Page. Bor der Top = 500
Page. Bor der Bott om = 500

Page. Wdt h = 20000
Page. Hei ght = 20000

Elementary Properties of Drawing Objects

Drawing objects include shapes (rectangles, circles, and so on), lines, and text objects. All of these
share a number of common features and support the com sun. st ar. dr awi ng. Shape service.
This service defines the Si ze and Posi t i on properties of a drawing object.

StarOffice Basic also offers several other services through which you can modify such properties, as
formatting or apply fills. The formatting options that are available depend on the type of drawing
object.

The following example creates and inserts a rectangle in a drawing document:

Di m Doc As Obj ect

Di m Page As Obj ect

Di m Rect angl eShape As Obj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Si ze As New com sun. star. awt . Si ze

Doc = St ar Deskt op. Cur r ent Conponent
Page = Doc. dr awPages(0)

Poi nt.x = 1000
Point.y = 1000
Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Rect angl eShape = Doc. creat el nst ance("com sun. st ar. dr awi ng. Rect angl eShape")
Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Page. add(Rect angl eShape)

This example uses the St ar Deskt op. Cur r ent Conponent call to determine which document is
open. The document object determined this way returns the first page of the drawing through the
dr awPages(0) call.

The Poi nt and Si ze structures with the point of origin (left hand corner) and the size of the
drawing object are then initialized. The lengths are specified in hundredths of a millimeter.

Chapter 8 Drawings and Presentations 139

The program code then uses the Doc. cr eat el nst ance call to create the rectangle drawing object
as specified by the com sun. st ar. dr awi ng. Rect angl eShape service. At the end, the drawing
object is assigned to a page using a Page. add call.

Fill Properties

This section describes four services and in each instance the sample program code uses a rectangle
shape element that combines several types of formatting. Fill properties are combined in the
com sun. star.draw ng. Fi |l | Properti es service.

StarOffice recognizes four main types of formatting for a fill area. The simplest variant is a single-
color fill. The options for defining color gradients and hatches let you create other colors into play.
The fourth variant is the option of projecting existing graphics into the fill area.

The fill mode of a drawing object is defined using the Fi | | St yl e property. The permissible
values are defined incom sun. star.drawi ng. Fil | Styl e.

Single Color Fills

The main property for single-color fills is

= FillColor (Long) —fill color of area.

To use the fill mode, you must the Fi | | St yl e property to the SOLI Dfill mode.

The following example creates a rectangle shape and fills it with red (RGB value 255, 0, 0):

Di m Doc As (bj ect

Di m Page As Obj ect

Di m Rect angl eShape As Obj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Size As New com sun. star.awt . Si ze

Poi nt.x = 1000

Poi nt.y = 1000
Size.Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. creat el nst ance("com sun. st ar. drawi ng. Rect angl eShape")
Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Rect angl eShape. Fil | Styl e
Rect angl eShape. Fi | | Col or

com sun. star.drawing. Fil | Styl e. SOLI D
RGB(255, 0, 0)

Page. add(Rect angl eShape)

140 StarOffice™ 7 Basic Programmer's Guide

Color Gradient

If you setthe Fi | | St yl e property to GRADI ENT, you can apply a color gradient to any fill area of
a StarOffice document.

If you want to apply a predefined color gradient, you can assign the associated name of the

Fi | | Transpar enceG adi ent Nane property. To define your own color gradient, you need to
complete acom sun. st ar. awt . G adi ent structure to assign the Fi | | Gr adi ent property.
This property provides the following options:

= Style (Enum -type of gradient, for example, linear or radial (default values in accordance
with com sun. star. awt . Gradi ent Styl e)

= StartColor (Long) - start color of color gradient
= EndColor (Long) - end color of color gradient
= Angle (Short) - angle of color gradient in tenths of a degree

= XOffset (Short) - X-coordinate at which the color gradient starts, specified in hundredths of a
millimeter

= YOffset (Short) - Y-coordinate at which the color gradient begins, specified in hundredths of a
millimeter

= StartIntensity (Short) - intensity of St ar t Col or as a percentage (in StarOffice Basic, you can
also specify values higher than 100 percent)

= EndIntensity (Short) - intensity of EndCol or as a percentage (in StarOffice Basic, you can also
specify values higher than 100 percent)

= StepCount (Short) - number of color graduations which StarOffice is to calculate for the gradients

The following example demonstrates the use of color gradients with the aid of the
com sun. star. awt . G adi ent structure:

Di m Doc As (bj ect

Di m Page As bj ect

Di m Rect angl eShape As bj ect

Di m Poi nt As New com sun. star. awt . Poi nt

Dim Size As New com sun. star.awt . Si ze

Di m Gradi ent As New com sun. star. awt . G adi ent

Poi nt.x = 1000
Point.y = 1000

Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. creat el nst ance("com sun. st ar. dr awi ng. Rect angl eShape")
Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Gradient.Style = com sun. star. awt. G adi ent Styl e. LI NEAR
G adi ent. Start Col or = RGB(255, 0, 0)

Chapter 8 Drawings and Presentations 141

G adi ent . EndCol or = RGB(0, 255, 0)
Gadient. Startlntensity = 150
Gradient. Endlntensity = 150
Gradi ent. Angl e = 450

G adi ent . St epCount = 100

Rect angl eShape. Fil | Styl e = com sun. star.draw ng. Fi |l | Styl e. GRADI ENT
Rect angl eShape. Fil | G adi ent = G adi ent

Page. add(Rect angl eShape)

This example creates a linear color gradient (St yl e = LI NEAR). The gradient starts with red

(St art Col or) in the top left corner, and extends at a 45 degree angle (Angl e) to green

(EndCol or) in the bottom right corner. The color intensity of the start and end colors is 150 percent
(Startlntensity and Endl nt ensi t y) which results in the colors seeming brighter than the
values specified in the St ar t Col or and EndCol or properties. The color gradient is depicted
using a hundred graduated individual colors (St epCount).

Hatches

To create a hatch fill, the Fi | | St yl e property must be set to HATCH. The program code for
defining the hatch is very similar to the code for color gradients. Again an auxiliary structure, in
this case com sun. st ar. dr awi ng. Hat ch, is used to define the appearance of hatches. The
structure for hatches has the following properties:

= Style (Enum -type of hatch: simple, squared, or squared with diagonals (default values in
accordance withcom sun. star. awt . Hat chSt yl e)

= Col or (Long) - color of lines
= Distance (Long) - distance between lines in hundredths of a millimeter
= Angl e (Short) -angle of hatch in tenths of a degree

The following example demonstrates the use of a hatch structure:

Di m Doc As (bj ect

Di m Page As Obj ect

Di m Rect angl eShape As Obj ect

Di m Poi nt As New com sun. star. awt . Poi nt

Dim Si ze As New com sun. star. awt . Si ze

Di m Hat ch As New com sun. st ar. drawi ng. Hat ch

Poi nt.x = 1000

Poi nt.y = 1000

Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. creat el nst ance("com sun. st ar. drawi ng. Rect angl eShape")

Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

142 StarOffice™ 7 Basic Programmer's Guide

Rect angl eShape. Fi | | Styl e = com sun. star. drawi ng. Fi |l | Styl e. HATCH

Hat ch. Styl e = com sun. st ar. draw ng. Hat chSt yl e. SI NGLE
Hat ch. Col or RCB(64, 64, 64)

Hat ch. Di stance = 20

Hat ch. Angl e = 450

Rect angl eShape. Fi | | Hat ch = Hatch
Page. add(Rect angl eShape)

This code creates a simple hatch structure (Hat chSt yl e = SI NGLE) whose lines are rotated 45
degrees (Angl e). The lines are dark gray (Col or) and are spaced is 0.2 millimeters (Di st ance)
apart.

Bitmaps

To use bitmap projection as a fill, you must set the Fi | | St yl e property to Bl TMAP. If the bitmap
is already available in StarOffice, you just need to specify its name in the Fi | | Bi t MapNane
property and its display style (simple, tiled, or elongated) in the Fi | | Bi t mapMode property
(default values in accordance with com sun. st ar. dr awi ng. Bi t napMode).

If you want to use an external bitmap file, you can specify its URL in the Fi | | Bi t mapURL
property.

The following example creates a rectangle and tiles the Sky bitmap that is available in StarOffice to
fill the area of the rectangle.

Di m Doc As Obj ect

Di m Page As Obj ect

Di m Rect angl eShape As bj ect

Di m Poi nt As New com sun. star. awt . Poi nt
Dim Si ze As New com sun. star. awt . Si ze

Poi nt.x = 1000
Point.y = 1000
Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Cur r ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. creat el nst ance("com sun. st ar. drawi ng. Rect angl eShape")
Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Rect angl eShape. Fil | Styl e = com sun. star.drawi ng. Fi | | Styl e. Bl TMAP

Rect angl eShape. Fi | | Bi t mapName = " Sky"
Rect angl eShape. Fi | | Bi t mrapMbde = com sun. st ar. dr awi ng. Bi t mapMode. REPEAT

Page. add(Rect angl eShape)

Chapter 8 Drawings and Presentations 143

Transparency

You can adjust the transparency of any fill that you apply. The simplest way to change the
transparency of a drawing element is to use the Fi | | Tr anspar ence property.

The following example creates a red rectangle with a transparency of 50 percent.

Di m Doc As Obj ect

Di m Page As Obj ect

Di m Rect angl eShape As Obj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Si ze As New com sun. star. aw . Si ze

Poi nt.x = 1000

Poi nt.y = 1000

Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. cr eat el nst ance("com sun. st ar . dr awi ng. Rect angl eShape")
Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Rect angl eShape. Fil | Styl e = com sun. star.drawi ng. Fill Styl e. SOLI D
Rect angl eShape. Fi | | Transpar ence = 50
Rect angl eShape. Fi | | Col or = RGB(255, 0, 0)

Page. add(Rect angl eShape)

To make the fill transparent, set the Fi | | Tr anspar ence property to 100.

In addition to the Fi | | Tr anspar ence property, the

com sun. star.draw ng. Fi | | Properti es service also provides the

Fi || Transpar enceG adi ent property. This is used to define a gradient that specifies the
transparency of a fill area.

Line Properties

All drawing objects that can have a border line support the
com sun. star. draw ng. Li neSt yl e service. Some of the properties that this service provides
are:

= LineStyle (Enum - line type (default values in accordance with
com sun. star. draw ng. Li neStyl e)

= LineCol or (Long) -linecolor
= LineTransparence (Short) - line transparency
= LineWdth (Long) - line thickness in hundredths of a millimeter

= LineJoint (Enum -transitions to connection points (default values in accordance with
com sun. star. draw ng. Li neJoi nt)

144 StarOffice™ 7 Basic Programmer's Guide

The following example creates a rectangle with a solid border (Li neSt yl e = SOLI D) that is 5
millimeters thick (Li neW dt h) and 50 percent transparent. The right and left-hand edges of the
line extend to their points of intersect with each other (Li neJoi nt =M TER) to form a right-angle.

Di m Doc As (bj ect

Di m Page As Obj ect

Di m Rect angl eShape As Obj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Size As New com sun. star.awt . Si ze

Poi nt.x = 1000
Point.y = 1000

Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. creat el nst ance("com sun. st ar. dr awi ng. Rect angl eShape")
Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Rect angl eShape. Li neCol or = RGB(128, 128, 128)

Rect angl eShape. Li neTr anspar ence = 50

Rect angl eShape. Li neW dt h = 500

Rect angl eShape. Li neJoi nt = com sun. star. draw ng. Li neJoi nt. M TER

Rect angl eShape. Li neStyl e = com sun. star. drawi ng. Li neStyl e. SOLI D
Page. add(Rect angl eShape)

In addition to the listed properties, the com sun. st ar. dr awi ng. Li neSt yl e service provides
options for drawing dotted and dashed lines. For more information, see the StarOffice API
reference.

Text Properties (Drawing Objects)

The com sun. star. styl e. Charact er Properties and

com sun. star. styl e. ParagraphProperti es services can format text in drawing objects.
These services relate to individual characters and paragraphs and are described in detail in
Chapter 6 (Text Documents).

Chapter 8 Drawings and Presentations 145

The following example inserts text in a rectangle and formats the font
com sun. star. styl e. Charact er Properti es service.

Di m Doc As Obj ect

Di m Page As Obj ect

Di m Rect angl eShape As Obj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Size As New com sun. star.aw . Si ze
Poi nt.x = 1000

Poi nt.y = 1000

Size. Wdth = 10000

Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. creat el nst ance("com sun. st ar. drawi ng. Rect angl eShape")
Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Page. add(Rect angl eShape)

Rect angl eShape. String = "Das ist ein Test"
Rect angl eShape. Char Wi ght = com sun. st ar. awt . Font Wi ght . BOLD
Rect angl eShape. Char Font Nane = "Arial "

This code uses the St ri ng-property of the rectangle to insert the text and the Char Wi ght and
Char Font Name properties from the com sun. st ar. styl e. Char act er Properti es service to
format the text font.

The text can only be inserted after the drawing object has been added to the drawing page. You can
also use the com sun. st ar. dr awi ng. Text service to position and format text in drawing
object. The following are some of the important properties of this service:

= Text Aut oG owHei ght (Bool ean) - adapts the height of the drawing element to the text it
contains

= Text Aut oG owW dt h (Bool ean) - adapts the width of the drawing element to the text it
contains

= Text Horizontal Adj ust (Enum - horizontal position of text within the drawing element
(default values in accordance with com sun. st ar . dr awi ng. Text Hori zont al Adj ust)

= TextVertical Adj ust (Enum - vertical position of text within the drawing element (default
values in accordance with com sun. st ar. dr awi ng. Text Verti cal Adj ust)

= TextLeftDi stance (Long) - left-hand distance between drawing element and text in
hundredths of a millimeter

= Text Ri ght Di stance (Long) - right-hand distance between drawing element and text in
hundredths of a millimeter

= Text Upper Di stance (Long) - upper distance between drawing element and text in
hundredths of a millimeter

= TextLower Di stance (Long) - lower distance between drawing element and text in
hundredths of a millimeter

146 StarOffice™ 7 Basic Programmer's Guide

The following example demonstrates use of the named properties.

Di m Doc As (bj ect

Di m Page As Obj ect

Di m Rect angl eShape As bj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Size As New com sun. star.awt . Si ze

Poi nt.x = 1000
Point.y = 1000

Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Cur r ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. creat el nst ance("com sun. st ar. drawi ng. Rect angl eShape")

Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Page. add(Rect angl eShape)
Rect angl eShape. String = "This is a test" ' My only take place after Page.add!

Rect angl eShape. Text Verti cal Adj ust = com sun. st ar. draw ng. Text Verti cal Adj ust. TOP
Rect angl eShape. Text Hor i zont al Adj ust = com sun. st ar. draw ng. Text Hori zont al Adj ust . LEFT

Rect angl eShape. Text Lef t Di stance = 300

Rect angl eShape. Text Ri ght Di stance = 300
Rect angl eShape. Text Upper Di stance = 300
Rect angl eShape. Text Lower Di st ance = 300

This code inserts a drawing element in a page and then adds text to the top left corner of the
drawing object using the Text Ver ti cal Adj ust and Text Hor i zont al Adj ust properties. The
minimum distance between the text edge of the drawing object is set to three millimeters.

Shadow Properties

You can add a shadow to most drawing objects with the
com sun. st ar. draw ng. ShadowPr operti es service. The properties of this service are:

= Shadow (Bool ean) - activates the shadow
= ShadowCol or (Long) -shadow color
= ShadowTransparence (Short) -transparency of the shadow

= ShadowXDi st ance (Long) - vertical distance of the shadow from the drawing object in
hundredths of a millimeter

= ShadowYDi st ance (Long) - horizontal distance of the shadow from the drawing object in
hundredths of a millimeter

The following example creates a rectangle with a shadow that is vertically and horizontally offset
from the rectangle by 2 millimeters. The shadow is rendered in dark gray with 50 percent
transparency.

Chapter 8 Drawings and Presentations 147

Di m Doc As Obj ect

Di m Page As Obj ect

Di m Rect angl eShape As Obj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Si ze As New com sun. star. aw . Si ze

Poi nt.x = 1000

Poi nt.y = 1000

Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. creat el nst ance("com sun. st ar. drawi ng. Rect angl eShape")
Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Rect angl eShape. Shadow = True

Rect angl eShape. ShadowCol or = RGB(192, 192, 192)
Rect angl eShape. ShadowTr anspar ence = 50

Rect angl eShape. ShadowXDi st ance = 200

Rect angl eShape. ShadowYDi st ance = 200

Page. add(Rect angl eShape)

An Overview of Various Drawing Objects

Rectangle Shapes

Rectangle shape objects (com sun. st ar. dr awi ng. Rect angl eShape) support the following
services for formatting objects:

= Fill properties—com sun. star.drawi ng. Fi | | Properties
= Line properties—com sun. st ar. draw ng. Li neProperties

= Text properties—com sun. st ar. dr awi ng. Text (with
com sun. star. styl e. CharacterPropertiesand
com sun. star. styl e. ParagraphProperti es)

= Shadow properties —com sun. st ar. dr awi ng. ShadowPr operti es

= CornerRadius (Long) - radius for rounding corners in hundredths of a millimeter

Circles and Ellipses

The Service com sun. st ar. dr awi ng. El | i pseShape service is responsible for circles and
ellipses and supports the following services:

= Fill properties—com sun. star.drawi ng. Fi | | Properties

= Line properties—com sun. st ar. draw ng. Li neProperties

148 StarOffice™ 7 Basic Programmer's Guide

= Text properties—com sun. st ar. dr awi ng. Text (with
com sun. star.styl e. Character Properti es and
com sun. star. styl e. ParagraphProperties)

= Shadow properties—com sun. st ar. dr awi ng. ShadowPr operti es
In addition to these services, circles and ellipses also provide these properties:

= CircleKind (Enum -type of circle or ellipse (default values in accordance with
com sun. star. draw ng. G rcl eKi nd)

= CircleStartAngle (Long) -startangle in tenths of a degree (only for circle or ellipse
segments)

= Gircl eEndAngl e (Long) - end angle in tenths of a degree (only for circle or ellipse segments)

The Ci r cl eKi nd property determines if an object is a complete circle, a circular slice, or a section
of a circle. The following values are available:

= comsun. star.draw ng. G rcl eKi nd. FULL —full circle or full ellipse

= com sun. star.draw ng. G rcl eKi nd. CUT — section of circle (partial circle whose
interfaces are linked directly to one another)

= com sun. star.draw ng. G rcl eKi nd. SECTI ON- circle slice
= comsun. star.draw ng. G rcl eKi nd. ARC-angle (not including circle line)

The following example creates a circular slice with a 70 degree angle (produced from difference
between start angle of 20 degrees and end angle of 90 degrees)

Di m Doc As (bj ect

Di m Page As Obj ect

Di m El | i pseShape As Obj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Size As New com sun. star.awt . Si ze

Poi nt.x = 1000
Point.y = 1000

Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Chapter 8 Drawings and Presentations 149

El | i pseShape = Doc. creat el nst ance("com sun. st ar. drawi ng. El | i pseShape")
El | i pseShape. Si ze = Si ze
El | i pseShape. Posi ti on = Poi nt

El | i pseShape. G rcl eStart Angl e = 2000
El | i pseShape. G rcl eEndAngl e = 9000
El i pseShape. G rcl eKind = com sun. star.draw ng. G rcl eKi nd. SECTI ON

Page. add(El | i pseShape)

Lines

StarOffice provides the com sun. st ar. dr awi ng. Li neShape service for line objects. Line
objects support all of the general formatting services with the exception of areas. The following are

all of the properties that are associated with the Li neShape service:
= Line properties—com sun. st ar. draw ng. Li neProperties

= Text properties—com sun. st ar. dr awi ng. Text (with
com sun. star. styl e. CharacterPropertiesand
com sun. star. styl e. ParagraphProperti es)

= Shadow properties —com sun. st ar. dr awi ng. ShadowPr operti es

The following example creates and formats a line with the help of the named properties. The origin
of the line is specified in the Locat i on property, whereas the coordinates listed in the Si ze
property specify the end point of the line.

Di m Doc As Obj ect

Di m Page As Obj ect

Di m Li neShape As Obj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Si ze As New com sun. star. aw . Si ze

Poi nt.x = 1000

Poi nt.y = 1000

Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Li neShape = Doc. creat el nst ance("com sun. st ar. drawi ng. Li neShape")
Li neShape. Si ze = Size

Li neShape. Posi ti on = Poi nt

Page. add(Li neShape)

150 StarOffice™ 7 Basic Programmer's Guide

Polypolygon Shapes

StarOffice also supports complex polygonal shapes through the

com sun. st ar. drawi ng. Pol yPol ygonShape service. Strictly speaking, a PolyPolygon is not a
simple polygon but a multiple polygon. Several independent lists containing corner points can
therefore be specified and combined to form a complete object.

As with rectangle shapes, all the formatting properties of drawing objects are also provided for
polypolygons:

= Fill properties—com sun. star.drawi ng. Fi | | Properties
= Line properties—com sun. star. draw ng. Li neProperties

= Text properties—com sun. st ar. dr awi ng. Text (with
com sun. star.styl e. Character Properti es and
com sun. star. styl e. ParagraphProperti es)

= Shadow properties—com sun. st ar. dr awi ng. ShadowPr operti es

The Pol yPol ygonShape service also has a property that lets you define the coordinates of a
polygon:

= Pol yPol ygon (Array) -field containing the coordinates of the polygon (double array with
points of the com sun. st ar. awt . Poi nt type)

The following example shows how you can define a triangle with the Pol yPol ygonShape
service.

Di m Doc As (bj ect

Di m Page As bj ect

Di m Pol yPol ygonShape As Obj ect

Di m Pol yPol ygon As Vari ant

Di m Coor di nat es(2) As New com sun. star.aw . Poi nt

Doc = St ar Deskt op. Cur r ent Conponent
Page = Doc. dr awPages(0)

Pol yPol ygonShape = Doc. creat el nst ance("com sun. st ar. drawi ng. Pol yPol ygonShape")

Page. add(Pol yPol ygonShape) ' Page. add nust take place before the coordi nates are set
Coordi nates(0).x = 1000
Coordi nates(1).x = 7500
Coor di nates(2).x = 10000
Coordi nates(0).y = 1000
Coordi nates(1).y = 7500
Coordi nates(2).y = 5000

Pol yPol ygonShape. Pol yPol ygon = Array(Coordi nates())

Since the points of a polygon are defined as absolute values, you do not need to specify the size or
the start position of a polygon. Instead, you need to create an array of the points, package this array
in a second array (using the Ar r ay(Coor di nat es() call) , and then assign this array to the
polygon. Before the corresponding call can be made, the polygon must be inserted into the
document.

Chapter 8 Drawings and Presentations 151

The double array in the definition allows you to create complex shapes by merging several
polygons. For example, you can create a rectangle and then insert another rectangle inside it to
create a hole in the original rectangle:

Di m Doc As (bj ect

Di m Page As Obj ect

Di m Pol yPol ygonShape As bj ect

Di m Pol yPol ygon As Vari ant

Di m Squarel(3) As New com sun. star.awt . Poi nt
Di m Squar e2(3) As New com sun. st ar. awt . Poi nt
Di m Squar e3(3) As New com sun. st ar. awt . Poi nt

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Pol yPol ygonShape = Doc. cr eat el nst ance("com sun. st ar . dr awi ng. Pol yPol ygonShape")

Page. add(Pol yPol ygonShape) ' Page. add nust take place before the coordinates are set
Squarel(0).x = 5000
Squarel(1).x = 10000
Squarel(2).x = 10000
Squarel(3).x = 5000
Squarel(0).y = 5000
Squarel(1l).y = 5000
Squarel(2).y = 10000
Squarel(3).y = 10000
Squar e2(0).x = 6500
Square2(1).x = 8500
Squar e2(2).x = 8500
Square2(3).x = 6500
Square2(0).y = 6500
Square2(1).y = 6500
Square2(2).y = 8500
Square2(3).y = 8500
Squar e3(0).x = 6500
Square3(1).x = 8500
Square3(2).x = 8500
Square3(3).x = 6500
Square3(0).y = 9000
Square3(1).y = 9000
Square3(2).y = 9500
Square3(3).y = 9500

Pol yPol ygonShape. Pol yPol ygon = Array(Squarel(), Square2(), Square3())

With respect as to which areas are filled and which areas are holes, StarOffice applies a simple rule:
the edge of the outer shape is always the outer border of the polypolygon. The next line inwards is
the inner border of the shape and marks the transition to the first hole. If there is another line
inwards, it marks the transition to a filled area.

152 StarOffice™ 7 Basic Programmer's Guide

Graphics

The last of the drawing elements presented here are graphic objects that are based on the
com sun. st ar. drawi ng. G aphi cObj ect Shape service. These can be used with any graphic
within StarOffice whose appearance can be adapted using a whole range of properties.

Graphic objects support two of the general formatting properties:

= Text properties—com sun. st ar. dr awi ng. Text (with
com sun. star. styl e. Character Properti es and
com sun. star. styl e. ParagraphProperti es)

= Shadow properties—com sun. st ar. dr awi ng. ShadowPr operti es
Additional properties that are supported by graphic objects are:
= Gaphi cURL (String) - URL of the graphic

= Adj ust Lum nance (Short) -luminance of the colors, as a percentage (negative values are
also permitted)

= AdjustContrast (Short) -contrastas a percentage (negative values are also permitted)
= AdjustRed (Short) -red value as a percentage (negative values are also permitted)

= Adj ust Green (Short) -green value as a percentage (negative values are also permitted)
= Adj ust Bl ue (Short) -blue value as a percentage (negative values are also permitted)

= Gamma (Short) - gamma value of a graphic

= Transparency (Short) -transparency of a graphic as a percentage

= G aphi cCol or Mode (enuny - color mode, for example, standard, gray stages, black and
white (default value in accordance with com sun. st ar . dr awi ng. Col or Mode)

Chapter 8 Drawings and Presentations 153

The following example shows how to insert a page into a graphics object.Dim Doc As Object

Di m Page As Obj ect

Di m G aphi cQbj ect Shape As Obj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Si ze As New com sun. star. aw . Si ze

Poi nt. x = 1000 ' specifications, insignificant because |latter
coordi nates are binding

Poi nt.y = 1000

Si ze. Wdth = 10000

Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

G aphi cObj ect Shape = Doc. creat el nst ance("com sun. st ar. drawi ng. G aphi cObj ect Shape")

G aphi coj ect Shape. Si ze = Si ze
G aphi coj ect Shape. Posi ti on = Poi nt

G aphi coj ect Shape. Graphi cURL = "“file:///c:/test.]pg"

G aphi cObj ect Shape. Adj ust Bl ue = -50

G aphi cObj ect Shape. Adj ust G een = 5

G aphi cObj ect Shape. Adj ust Bl ue = 10

G aphi cObj ect Shape. Adj ust Contrast = 20

G aphi coj ect Shape. Adj ust Lum nance = 50

G aphi cObj ect Shape. Transpar ency = 40

G aphi coj ect Shape. G aphi cCol or Mode = com sun. st ar. dr awi ng. Col or Mode. STANDARD

Page. add(G- aphi cObj ect Shape)

This code inserts the t est . j pg graphic and adapts its appearance using the Adj ust properties. In
this example, the graphics are depicted as 40 percent transparent with no other color conversions
do not take place (Gr aphi cCol or Mode = STANDARD).

154 StarOffice™ 7 Basic Programmer's Guide

Editing Drawing Objects

Grouping Obijects

In many situations, it is useful to group several individual drawing objects together so that they
behave as a single large object.

The following example combines two drawing objects:

Di m Doc As (bj ect

Di m Page As Obj ect

Di m Square As bj ect

DmCrcle As Object

Di m Shapes As Obj ect

Dim G oup As Obj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Si ze As New com sun. star. awt . Si ze
Di m NewPos As New com sun. st ar. awt . Poi nt
Di m Hei ght As Long

Dim Wdth As Long

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)
Poi nt.x = 3000
Poi nt.y = 3000
Si ze. Wdth = 3000
Si ze. Hei ght = 3000
create square draw ng el ement
Square = Doc. creat el nstance("com sun. star. draw ng. Rect angl eShape")
Square. Si ze = Si ze
Squar e. Posi tion = Poi nt
Square. Fi |l | Col or = RGB(255, 128, 128)
Page. add(Squar e)
create circle draw ng el ement
Circle = Doc. createl nstance("com sun. star. draw ng. El | i pseShape")
Crcle.Size = Size
Circle.Position = Point
Crcle.FillColor RGB(255, 128, 128)
Crcle.FillColor RGB(0, 255, 0)
Page. add(Circl e)
conbi ne square and circle drawi ng el enents
Shapes = creat eUnoServi ce("com sun. star. draw ng. ShapeCol | ecti on")
Shapes. add(Squar e)
Shapes. add(Ci rcl e)
G oup = Page. group(Shapes)
' centre conbined drawi ng el ements
Hei ght = Page. Hei ght
Wdth = Page. Wdth
NewPos. X = Wdth / 2
NewPos. Y = Height / 2
Hei ght = Group. Si ze. Hei ght
Wdth = G oup. Si ze. Wdth
NewPos. X = NewPos. X - Wdth / 2
NewPos. Y = NewPos.Y - Height / 2
G oup. Posi tion = NewPos

Chapter 8 Drawings and Presentations 155

This code creates a rectangle and a circle and inserts them into a page. It then creates an object that
supports the com sun. st ar. dr awi ng. ShapeCol | ecti on service and uses the Add method to
add the rectangle and the circle to this object. The ShapeCol | ect i on is added to the page using
the Gr oup method and returns the actual G oup object that can be edited like an individual
Shape.

If you want to format the individual objects of a group, apply the formatting before you add them
to the group. You cannot modify the objects once they are in the group.

Rotating and Shearing Drawing Objects

All of the drawing objects that are described in the previous sections can also be rotated and
sheared using the com sun. st ar. drawi ng. Rot ati onDescri pt or service.

The service provides the following properties:
= RotateAngl e (Long) -rotary angle in hundredths of a degree
= Shear Angl e (Long) - shear angle in hundredths of a degree

The following example creates a rectangle and rotates it by 30 degrees using the Rot at eAngl e
property:

Di m Doc As (bj ect

Di m Page As Obj ect

Di m Rect angl eShape As Obj ect

Di m Poi nt As New com sun. st ar.awt . Poi nt
Dim Size As New com sun. star.awt . Si ze

Poi nt.x = 1000

Poi nt.y = 1000
Size. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. cr eat el nst ance("com sun. st ar . dr awi ng. Rect angl eShape")
Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Rect angl eShape. Rot at eAngl e = 3000

Page. add(Rect angl eShape)

156 StarOffice™ 7 Basic Programmer's Guide

The next example creates the same rectangle as in the previous example, but instead shears it through
30 degrees using the Shear Angl e property.

Di m Doc As Obj ect

Di m Page As bj ect

Di m Rect angl eShape As bj ect

Di m Poi nt As New com sun. st ar. awt . Poi nt
Dim Si ze As New com sun. star. awt . Si ze

Poi nt.x = 1000
Point.y = 1000
Si ze. Wdth = 10000
Si ze. Hei ght = 10000

Doc = St ar Deskt op. Cur r ent Conponent
Page = Doc. dr awPages(0)

Rect angl eShape = Doc. creat el nst ance("com sun. st ar. drawi ng. Rect angl eShape")
Rect angl eShape. Si ze = Si ze
Rect angl eShape. Posi ti on = Poi nt

Rect angl eShape. Shear Angl e = 3000

Page. add(Rect angl eShape)

Searching and Replacing

As in text documents, drawing documents provide a function for searching and replace. This
function is similar to the one that is used in text documents as described in Chapter 6, Text
Documents. However, in drawing documents the descriptor objects for searching and replacing are
not created directly through the document object, but rather through the associated character level.
The following example outlines the replacement process within a drawing:

Di m Doc As (bj ect

Di m Page As Obj ect

Di m Repl aceDescri ptor As Obj ect
Dim | As I|nteger

Doc = St ar Deskt op. Curr ent Conponent
Page = Doc. dr awPages(0)

Repl aceDescri ptor = Page. cr eat eRepl aceDescri ptor ()
Repl aceDescri ptor. SearchString = "is"
Repl aceDescri ptor. Repl aceString = "was"

For | = 0 to Doc.drawPages. Count - 1
Page = Doc. dr awPages(|)
Page. Repl aceAl | (Repl aceDescr i ptor)
Next |

This code uses the first Dr awPage of the document to create a Repl aceDescri pt or and then
applies this descriptor in a loop to all of the pages in the drawing document.

Chapter 8 Drawings and Presentations 157

Presentations

StarOffice presentations are based on drawing documents. Each page in the presentation is a slide.
You can access slides in the same way as a standard drawing is accessed through the Dr awPages list
of the document object. The com sun. st ar. present ati on. Present at i onDocunent service,
responsible for presentation documents, also provides the complete

com sun. st ar. draw ng. Dr awi ngDocunent service.

Working With Presentations

In addition to the drawing functions that are provided by the Pr esent at i on property, the
presentation document has a presentation object that provides access to the main properties and
control mechanisms for presentations. For example, this object provides a st art method that can
start presentations.

Di m Doc As Obj ect
Di m Present ati on As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Presentati on = Doc. Presentati on
Presentation.start()

The code used in this example creates a Doc object that references the current presentation
document and establishes the associated presentation object. The st ar t () method of the object is
used to start the example and run the screen presentation.

The following methods are provided as presentation objects:

= Start - starts the presentation

= end - ends the presentation

= rehearseTi m ngs - starts the presentation from the beginning and establishes its runtime
The following properties are also available:

= Al |l owAni nati ons (Bool ean) - runs animations in the presentation

= Custonthow (String) —allows you to specify the name of the presentation so that you can
reference the name in the presentation

= FirstPage (String) —name of slide that you want to start the presentation with

= | sAlwaysOnTop (Bool ean) —always displays the presentation window as the first window
on the screen

= |IsAutomatic (Bool ean) —automatically runs through the presentation

= | sEndl ess (Bool ean) —restarts the presentation from the beginning once it ends

= |IsFull Screen (Bool ean) —automatically starts the presentation in full screen mode
= | sMuseVisible (Bool ean) —displays the mouse during the presentation

= Pause (1 ong) -the amount of time that a blank screen is displayed at the end of the
presentation

= StartWthNavi gat or (Bool ean) —displays the navigator window when the presentation
starts

= UsePn (Bool ean) —displays the pointer during the presentation

158 StarOffice™ 7 Basic Programmer's Guide

CHAPTER 9

Diagrams (Charts)

StarOffice can display data as a diagram, which creates graphical links between data in the form of
bars, pie charts, lines or other elements. Data can either be displayed as 2D or 3D graphics, and the
appearance of the diagram elements can be individually adapted in a similar way to the process
used for drawing elements.

If the data is available in the form of a spreadsheet, then this can be dynamically linked to the
diagram. Any modifications made to the basic data can in this instance be seen immediately in the
assigned diagram. This chapter provides an overview of the programming interface for diagram
modules of StarOffice and focuses on the use of diagrams within spreadsheet documents.

Using Diagrams in Spreadsheets

Diagrams are not treated as independent documents in StarOffice, but as objects that are
embedded in an existing document.

While diagrams in text and drawing documents remain isolated from the content of the document,
when used in spreadsheet documents, a mechanism is provided which allows a link to be
established between the document data and embedded diagrams. The following example explains
the interaction between spreadsheet document and diagram:

Di m Doc As (bj ect
Dim Charts As bj ect
Dim Chart as Obj ect

Di m Rect As New com sun. st ar. awt . Rect angl e
Di m RangeAddr ess(0) As New com sun. st ar.tabl e. Cel | RangeAddr ess

Doc = St ar Deskt op. Cur r ent Conponent
Charts = Doc. Sheets(0). Charts

Rect.X = 8000
Rect.Y = 1000

Rect. Wdth = 10000
Rect . Hei ght = 7000

RangeAddr ess(0). Sheet = 0
RangeAddr ess(0). Start Col um = 0
RangeAddr ess(0). Start Row = 0
RangeAddr ess(0) . EndCol umm = 2
RangeAddr ess(0) . EndRow = 12

Charts. addNewByNanme("M/Chart", Rect, RangeAddress(), True, True)

159

Although the code used in the example may appear to be complex, the central processes are limited
to three lines: the first central line creates the Doc document variable, which references the current
spreadsheet document (Doc line = St ar Deskt op. Cur r ent Conponent). The code used in the
example then creates a list containing all charts of the first spreadsheet (Charts line =

Doc. Sheet s(0) . Chart s). Finally, a new chart is added to the last line of this list using the
addNewByNane method. This new chart is then visible to the user.

The last line initializes the Rect and RangeAddr ess auxiliary structures, which the

addNewBy Nanme method also provides as a parameter. Rect determines the position of the chart
within the spreadsheet. RangeAddr ess determines the range whose data is to be linked to the
chart.

The previous example creates a bar diagram. If a different type of graphic is needed, then the bar
diagram must be explicitly replaced:

Chart = Charts. get ByName("M/Chart"). enbeddedObj ect
Chart.Di agram = Chart. createl nstance("com sun. star.chart. Li neDi agrani')

The first lines defines the corresponding chart object. The second line replaces the current diagram
with a new one - in this example, a line diagram.

In Excel, a distinction is made between charts which have been inserted as a separate page in an Excel
document and charts which are embedded in a table page. Correspondingly, two different access methods
are defined there for charts. This distinction is not made in StarOffice Basic, because charts in StarOffice
Calc are always created as embedded objects of a table page. The charts are always accessed using the

Chart s list of the associated Sheet object.

The Structure of Diagrams

The structure of a diagram — and therefore the list of services and interfaces supported by it —
depends on its type. The methods and properties of the Z-axis, are, for example, only available in
3D diagrams, but not in 2D diagrams. In pie charts, there are no interfaces for working with axes.

The Individual Elements of a Diagram

Title, Sub-title and Key

A title, sub-title and key form part of the basic elements of every diagram. Diagrams provide their
own objects for each of these elements. The Chart object provides the following properties for
administrating these elements:

= HasMainTitl e (Bool ean) - activates the title.

= Title (Object) - object with detailed information about the diagram title (supports the
com sun. star.chart. ChartTitl e service).

= HasSubTi t| e(Bool ean) - activates the sub-title.

= Subtitle (Object) - object with detailed information about the diagram sub-title (supports
thecom sun. star.chart. ChartTi tl e service).

160 StarOffice™ 7 Basic Programmer's Guide

= HaslLegend (Bool ean) - activates the key.

= Legend (Object) — object with detailed information about the key to the diagram (supports the
com sun. star. chart. Chart LegendPosi ti on service).

In many respects, the elements specified correspond to a drawing element. This is due to the fact that
both the com sun. star. chart. Chart Ti t| e service and the

com sun. st ar. chart. Chart LegendPosi ti on supportthe com sun. st ar. dr awi ng. Shape
service, which forms the technical program basis for drawing elements.

Users therefore have the opportunity to determine the position and size of the element using the
Si ze and Posi ti on properties.

The other fill and line properties (com sun. star. drawi ng. Fi | | Properti es and

com sun. star. draw ng. Li neStyl e services) as well as the character properties

(com sun. star. styl e. Charact er Properti es service) are provided for formatting the
elements.

com sun. star. chart. ChartTitl e contains not only the named format properties, but also
two other properties:

= TextRotation (Long) —angle of rotation of text in 100ths of a degree.
= String (String) - textwhich to be displayed as the title or sub-title.

The diagram key (com sun. st ar. chart. Chart Legend service) contains the following
additional property:

= Alignnent (Enun - position at which the key appears (default value in accordance with
com sun. star. chart. Chart LegendPosi ti on).

Chapter 9 Diagrams (Charts) 161

The following example creates a diagram and assigns it the title "Test", the sub-title "Test 2" and a
key. The key has a gray background color, is placed at the bottom of the diagram, and has a
character size of 7 points.

Di m Doc As Obj ect
Dim Charts As Object
Di m Chart as Object

Di m Rect As New com sun. star.aw . Rect angl e
Di m RangeAddr ess(0) As New com sun. star.tabl e. Cel | RangeAddr ess

Rect. X = 8000
Rect.Y = 1000

Rect. Wdth = 10000
Rect . Hei ght = 7000

RangeAddr ess(0). Sheet = 0
RangeAddr ess(0). Start Col um = 0
RangeAddr ess(0). Start Row = 0
RangeAddr ess(0) . EndCol utm = 2
RangeAddr ess(0) . EndRow = 12

Doc = St ar Deskt op. Curr ent Conponent

Charts = Doc. Sheets(0).Charts

Charts. addNewByNane("MyChart", Rect, RangeAddress(), True, True)
Chart = Charts. get ByName("M/Chart"). EnbeddedObj ect

Chart. HasMai nTitle = True
Chart.Title. String = "Test"

Chart. HasSubTitle = True
Chart.Subtitle. String = "Test 2"

Chart . HasLegend = True

Chart . Legend. Al i gnnent = com sun. star. chart. Chart LegendPosi ti on. BOTTOM
Chart.Legend. Fill Style = com sun.star.drawi ng. Fill Styl e. SOLI D

Chart. Legend. Fi | | Col or RGB(210, 210, 210)

Chart. Legend. Char Hei ght = 7

Background

Every diagram has a background area. Every area has an object, which can be accessed using the
following properties of the diagram object:

= Area (bject) —background area of the diagram (supports
com sun. star. chart. Chart Ar ea service).

The background of a diagram covers its complete area, including the area under the title, sub-title
and diagram key. The associated com sun. st ar. chart. Chart Ar ea service supports line and
fill properties and provides no more extensive properties.

162 StarOffice™ 7 Basic Programmer's Guide

Diagram Walls and Floors

Although the diagram background covers the entire area of the diagram, the diagram back wall is
limited to the area directly behind the data area.

Two diagram walls usually exist for 3D diagrams: one behind the data area and one as the left-
hand demarcation to the Y-axis. 3D diagrams usually also have a floor.

= Floor (bject) —floor panel of the diagram (only for 3D diagrams, supports
com sun. star. chart. Chart Ar ea service).

= Wall (Object) —diagram walls (only for 3D diagrams, supports
com sun. star. chart. Chart Ar ea service).

The specified objects support the com sun. st ar. chart. Chart Area service, which in turn

provides the usual fill and line properties (com sun. star. draw ng. Fil | Properti es and

com sun. st ar. draw ng. Li neStyl e services, refer to Chapter 8).

The diagram walls and floor are accessed through the Chart object, which in turn is part of the

Chart object:

Chart. Area. Fi | | Bi t mpapNane = " Sky"

The following example shows how graphics (named Sky) already contained in StarOffice can be
used as a background to a diagram.

Di m Doc As (bj ect
Dim Charts As Obj ect
Dim Chart as Obj ect

Di m Rect As New com sun. st ar. awt . Rect angl e
Di m RangeAddr ess(0) As New com sun. star.tabl e. Cel | RangeAddr ess

Rect. X = 8000
Rect.Y = 1000

Rect. Wdth = 10000
Rect . Hei ght = 7000

RangeAddr ess(0) .
RangeAddr ess(0) .
RangeAddr ess(0) .
RangeAddr ess(0) .
RangeAddr ess(0) .

=0

Start Colum = 0

Start Row = 0
EndCol utmm = 2
EndRow = 12

Doc = St ar Deskt op. Curr ent Conponent
Charts = Doc. Sheets(0).Charts

Charts. addNewByNane("MyChart", Rect,

RangeAddr ess(), True, True)

Chart = Charts. get ByNane("M/Chart"). EnbeddedObj ect

Chart.Area.Fill Style = com sun. star.draw ng. Fill Styl e. Bl TMAP
Chart. Area. Fi |l | Bi t mapNane = " Sky"
Chart. Area. Fil | Bit mapMode = com sun. star. draw ng. Bi t mapMbde. REPEAT

Chapter 9 Diagrams (Charts) 163

AXes

StarOffice recognizes five different axes that can be used in a diagram. In the simplest scenario,
these are the X and Y-axes. When working with 3D diagrams, a Z-axis is also sometimes provided.
For diagrams in which the values of the various rows of data deviate significantly from one
another, StarOffice provides a second X and Y-axis for second scaling operations.

First X, Y and Z-Axis

In addition to the actual axis, for each of the first X, Y and Z-axes there can also be a title, a
description, a grid, and an auxiliary grid. There is an option for displaying and concealing all of these
elements. The diagram object provides the following properties for administration of these features
(taking the example of a X-axis; properties for Y and Z-axis are structured in the same way):

= HasXAxi s (Bool ean) — activates the X-axis.

= XAXxis (Object) - object with detailed information about the X-axis (supports
com sun. star. chart. Chart Axi s service).

= HasXAxi sDescription (Bool ean) —activates description for the X-axis.
» HasXAxi sGid (Bool ean) —activates main grid for X-axis.

= XMainGid (Object) —object with detailed information about main grid for X-axis (supports
com sun. star.chart. Chart Gi d service).

= HasXAxi sHel pGri d (Bool ean) —activates auxiliary grid for X-axis.

= XHel pGid (Object) —object with detailed information about auxiliary grid for X-axis
(supports com sun. star. chart. Chart Gri d service).

= HasXAxi sTitl e (Bool ean) — activates title of X-axis.

= XAxisTitle (Object) —object with detailed information about title of X-axis (supports
com sun. star.chart. ChartTitl e service).

Second X and Y-Axis

The following properties are available for the second X and Y-axes (properties taking example of
the second X-axis):

= HasSecondar yXAxi s (Bool ean) —activates the second X-axis.

= SecondaryXAxi s (Obj ect) —object with detailed information about the second X-axis
(supports com sun. st ar. chart. Chart Axi s service).

= HasSecondar yXAxi sDescri pti on (Bool ean) - activates description of X-axis.

Properties of the Axes

The axis objects of a StarOffice diagram support the com sun. star. chart. Chart Axi s service.
In addition to the properties for characters (com sun. st ar. styl e. Char act er Properti es

164 StarOffice™ 7 Basic Programmer's Guide

service, refer to Chapter 6) and lines (com sun. st ar. draw ng. Li neStyl e service, refer to
Chapter 8), it provides the following properties:

Max (Doubl e) - maximum value for axis.

M n (Doubl e) - minimum value for axis.

Origi n (Doubl e) - point of intersect for crossing axes.

St epMai n (Doubl e) - distance between two primary lines of the axis.

St epHel p (Doubl e) - distance between two secondary lines of the axis.

Aut oMax (Bool ean) - automatically determines maximum value for axis.

Aut oM n (Bool ean) -automatically determines minimum value for axis.

Aut oOri gi n (Bool ean) - automatically determines point of intersect for crossing axes.

Aut oSt epMai n (Bool ean) - automatically determines distance between primary lines of an
axis.

Aut oSt epHel p (Bool ean) - automatically determines distance between secondary lines of
an axis.

Logari thm c (Bool ean) - scales the axes in logarithmic manner (rather than linear manner).
Di spl ayLabel s (Bool ean) - activates the text label for axes.
Text Rot ati on (Long) - angle of rotation of text label of axes in 100ths of a degree.

Mar ks (Const) - constant that specifies whether the primary lines of the axis should be inside
or outside the diagram area (default values in accordance with
com sun. star. chart. Chart Axi sMar ks)

Hel pMar ks (Const) - constant that specifies whether the secondary lines of the axis should
be inside and/or outside the diagram area (default values in accordance with

com sun. star. chart. Chart Axi sMar ks)

Overl ap (Long) - percentage which specifies the extent to which the bars of different sets of
data may overlap (at 100%, the bars are shown as completely overlapping, at -100%, there is a
distance of the width of one bar between them).

GapW dt h (I ong) - percentage which specifies the distance there may be between the different
groups of bars of a chart (at 100%, there is a distance corresponding to the width of one bar).

ArrangeOrder (enum - details of position of inscription; in addition to positioning on a line,
there is also the option of splitting the label alternately over two lines (default value according

tocom sun. star. chart. Chart Axi sArrangeOr der Type)
Text Break (Bool ean) - permits line breaks.
Text CanOver | ap (Bool ean) - permits text overlaps.

Number For mat (Long) - number format (refer to Chapter 7, Number, Date and Text Format
section)

Chapter 9 Diagrams (Charts) 165

Properties of the axis grid

The object for the axis grid is based on the com sun. st ar. chart. Chart Gri d service, which in
turn supports the line properties of the com sun. st ar. dr awi ng. Li neSt yl e support service
(refer to Chapter 8).

Properties of the axis title

The objects for formatting the axis title are based on the com sun. star.chart. ChartTitl e
service, which is also used for diagram titles.

Example

The following example creates a line diagram. The color for the rear wall of the diagram is set to
white. Both the X and Y-axes have a gray auxiliary grid for visual orientation. The minimum value
of the Y-axis is fixed to 0 and the maximum value is fixed to 100 so that the resolution of the
diagram is retained even if the values are changed.

Di m Doc As (bj ect
Dim Charts As Obj ect
Dim Chart as Object

Di m Rect As New com sun. star.aw . Rect angl e
Di m RangeAddr ess(0) As New com sun. star.tabl e. Cel | RangeAddr ess

Doc = St ar Deskt op. Curr ent Conponent
Charts = Doc. Sheets(0).Charts

Rect. X = 8000
Rect.Y = 1000

Rect. Wdth = 10000
Rect . Hei ght = 7000

RangeAddr ess(0) . Sheet = 0
RangeAddr ess(0). Start Col um = 0
RangeAddr ess(0). Start Row = 0
RangeAddr ess(0) . EndCol utm = 2
RangeAddr ess(0) . EndRow = 12

Charts. addNewByNane("M/Chart", Rect, RangeAddress(), True, True)

Chart = Charts. get ByNane("M/Chart"). enbeddedObj ect
Chart.Di agram = Chart. createl nstance("com sun. star.chart. Li neDi agrani')

Chart.Diagram Wl | . Fil | Col or = RGB(255, 255, 255)

Chart. D agram HasXAxi sGid = True
Chart.Di agram XMai nGi d. Li neCol or = RGB(192, 192, 192)

Chart. D agram HasYAxi sGid = True

Chart.Di agram YMai nGi d. Li neCol or = RGB(192, 192, 192)
Chart.Di agram YAxis.Mn = 0

Chart . Di agram YAxi s. Max = 100

166 StarOffice™ 7 Basic Programmer's Guide

3D Diagrams

Most diagrams in StarOffice can also be displayed with 3D graphics. All diagram types that
provide this option support the com sun. st ar. chart . Di nBDDi agr am service. The service
provides just one property:

= Di 8D (Bool ean) - activates 3D display.

Stacked Diagrams

Stacked diagrams are diagrams that are arranged with several individual values on top of one
another to produce a total value. This view shows not only the individual values, but also an
overview of all the values.

In StarOffice, various types of diagrams can be displayed in a stacked form. All of these diagrams
supportthe com sun. st ar. chart. St ackabl eDi agr amservice, which in turn provides the
following properties:

= Stacked (Bool ean) —activates the stacked viewing mode.

= Percent (Bool ean) —rather than absolute values, displays their percentage distribution.
Diagram Types

Line Diagrams

Line diagrams (Service com sun. st ar. chart. Li neDi agr anj support one X-axis, two Y-axes
and one Z-axis. They can be displayed as 2D or 3D graphics

(com sun. star. chart. D nBDdi agr am service). The lines can be stacked

(com sun. star. chart. St ackabl eDi agr am.

Line diagrams provide the following properties:

= Synbol Type (const) -symbol for displaying the data points (constant in accordance with
com sun. star. chart. Chart Synbol Type).

= Synbol Si ze (Long) - size of symbol for displaying the data points in 100ths of a millimeter.
= Synbol Bi t mpapURL (String) - file name of graphics for displaying the data points.
= Lines (Bool ean) - links the data points by means of lines.

= SplineType (Long) -spline function for smoothing the lines (0: no spline function, 1: cubic
splines, 2: B splines).

= SplineOrder (Long) - polynomial weight for splines (only for B splines).

= SplineResol ution (Long) - number of support points for spline calculation.

Chapter 9 Diagrams (Charts) 167

Area Diagrams

Area diagrams (com sun. st ar. chart. Ar eaDi agr am service) support one X-axis, two Y-axes
and one Z-axis. They can be displayed as 2D or 3D graphics

(com sun. star. chart. Di nBDdi agr am service). The areas can be stacked
(com sun. star. chart. St ackabl eDi agr am.

Bar Diagrams

Bar diagrams (Service com sun. st ar. chart. Bar Di agr an) support one X-axis, two Y-axes and
one Z-axis. They can be displayed as 2D or 3D graphics (com sun. st ar. chart. Di nrBDdi agr am
service). The bars can be stacked (com sun. st ar. chart. St ackabl eDi agr an).

They provide the following properties:
= Vertical (Bool ean) —displays the bars vertically, otherwise they are depicted horizontally.

= Deep (Bool ean) -in 3D viewing mode, positions the bars behind one another rather than
next to one another.

= StackedBarsConnect ed (Bool ean) - links the associated bars in a stacked diagram by
means of lines (only available with horizontal charts).

= NumberOfLines (Long) - number of lines to be displayed in a stacked diagram as lines rather
than bars.

Pie Diagrams

Pie diagrams (com sun. st ar. chart . Pi eDi agr am service) do not contain any axes and cannot
be stacked. They can be displayed as 2D or 3D graphics (com sun. st ar. chart. Di nr8Ddi agr am
service).

168 StarOffice™ 7 Basic Programmer's Guide

cHapTEr 10

Database Access

StarOffice has an integrated database interface (independent of any systems) called Star Database
Connectivity (SDBC). The objective of developing this interface was to provide access to as many
different data sources as possible.

To make this possible, data sources are accessed by drivers. The sources from which the drivers
take their data is irrelevant to a SDBC user. Some drivers access file-based databases and take the
data directly from them. Others use standard interfaces such as JDBC or ODBC. There are,
however, also special drivers which access the MAPI address book, LDAP directories or StarOffice
spreadsheets as data sources.

Since the drivers are based on UNO components, other drivers can be developed and therefore
open up new data sources. You will find details about this in the StarOffice Developer's Guide.

In terms of its concept, SDBC is comparable with the ADO and DAO libraries available in VBA. It permits
high level access to databases, regardless of the underlying database backends.

The database interface of StarOffice has grown through the launch of StarOffice 7. Although in the past,
databases were primarily accessed using a range of methods of the Appl i cati on object, the interface in
StarOffice 7 sub-divides into several objects. A Dat abaseCont ext is used as the root object for the
database functions.

SQL: a Query Language

The SQL language is provided as a query language for users of SDBC. To compare the differences
between different SQL dialects, the SDBC components from StarOffice have their own SQL parser.
This uses the query window to check the SQL commands typed and corrects simple syntax errors,
such as those associated with uppercase and lowercase characters.

If a driver permits access to a data source that does not support SQL, then it must independently
convert the transferred SQL commands to the native access needed.

SQL implementation from SDBC is oriented towards the SQL-ANSI-Standard. Microsoft-specific
extensions, such as the | NNER JO N construct are not supported. These should be replaced with
standard commands (I NNER JO N, for example should be replaced with a corresponding WHERE clause).

169

Types of Database Access

The database interface from StarOffice is available in the StarOffice Writer and StarOffice Calc
applications, as well as in the database forms.

In StarOffice Writer, standard letters can be created with the assistance of SDBC data sources and
these can then be printed out. There is also an option for moving data from the database window
into text documents using the drag-and-drop function.

If the user moves a database table into a spreadsheet, StarOffice creates a table area which can be
updated at the click of the mouse if the original data has been modified. Conversely, spreadsheet
data can be moved to a database table and a database import performed.

Finally, StarOffice provides a mechanism for forms based on databases. To do this, the user first
creates a standard StarOffice Writer or StarOffice Calc form and then links the fields to a database.

All the options specified here are based on the user interface from StarOffice. No programming
knowledge is needed to use the corresponding functions.

This chapter, however, provides little information about the functions specified, but instead
concentrates on the programming interface from SDBC, which allows for automated database
guerying and therefore permits a much greater range of applications to be used.

Basic knowledge of the way in which databases function and the SQL query language is however
needed to fully understand the following sections.

Data Sources

A database is incorporated into StarOffice by creating what is commonly referred to as a data
source. The user interface provides a corresponding option for creating data sources in the Extras
menu. However, you also can create data sources and work with them using StarOffice Basic.

A database context object that is created using the cr eat eUnoSer vi ce function serves as the
starting point for accessing a data source. This based on the

com sun. st ar. sdb. Dat abaseCont ext service and is the root object for all database
operations.

The following example shows how a database context can be created and then used to determine
the names of all data sources available. It displays the names in a message box.

Di m Dat abaseCont ext As (bj ect
Di m Nanes
Dim| As |Integer

Dat abaseCont ext = creat eUnoServi ce("com sun. st ar. sdb. Dat abaseCont ext ")
Names = Dat abaseCont ext . get El ement Nanmes()
For | = 0 To UBound(Names())

MsgBox Names(1)
Next |

170 StarOffice™ 7 Basic Programmer's Guide

The individual data sources are based on the com sun. st ar. sdb. Dat aSour ce service and can
be determined from the database context using the get By Nane method:

Di m Dat abaseCont ext As Obj ect
Di m Dat aSource As Obj ect

Dat abaseCont ext = creat eUnoSer vi ce("com sun. st ar. sdb. Dat abaseCont ext ")
Dat aSour ce = Dat abaseCont ext . get ByNanme(" Cust oner s")

The example creates a Dat aSour ce object for a data source called Customers.

Data sources provide a range of properties, which in turn provide general information about the
origin of the data and information about access methods. The properties are:
= Name (String) —name of data source.

= URL (String) —URL of data source in the form of jdbc: subprotocol : subname or sdbc:
subprotocol : subname.

= Info (Array) -array containing Pr opert yVal ue-pairs with connection parameters
(usually at least user name and password).

= User (String) —user name.
= Password (String) - user password (is not saved).

= | sPasswordRequi red (Bool ean) - the password is needed and is interactively requested
from user.

= | sReadOnly (Bool ean) - permits read-only access to the database.

= Nunber For mat sSuppl i er (Cbj ect) - object containing the number formats available for
the database (supports the com sun. star. uti | . XNunber For mat sSuppl i er interface,
refer to Chapter 7, Number, Date and Text Format section).

= TableFilter (Array) - listof table names to be displayed.

= Tabl eTypeFilter (Array) - list of table types to be displayed. Values available are TABLE,
VI EWand SYSTEM TABLE.

= SuppressVersi onCol unms (Bool ean) - suppresses the display of columns that are used
for version administration.

The data sources from StarOffice are not 1:1 comparable with the data sources in ODBC. Whereas an ODBC
data source only covers information about the origin of the data, a data source in StarOffice also includes a
range of information about how the data is displayed within the database windows of StarOffice.

Queries

Predefined queries can be assigned to a data source. StarOffice notes the SQL commands of queries
so that they are available at all times. Queries are used to simplify working with databases because
they can be opened with a simple mouse click and also provide users without any knowledge of
SQL with the option of issuing SQL commands.

An object which supports the com sun. st ar. sdb. Quer yDefi ni ti on service is concealed
behind a query. The queries are accessed by means of the Quer yDef i ni t i ons method of the data
source.

Chapter 10 Database Access 171

The following example lists the names of data source queries can be established in a message box.

Di m Dat abaseCont ext As (bj ect
Di m Dat aSource As Obj ect

Di m QueryDefinitions As (bj ect
Di m QueryDefinition As (bj ect
Dim| As |Integer

Dat abaseCont ext = creat eUnoServi ce("com sun. st ar. sdb. Dat abaseCont ext ")
Dat aSour ce = Dat abaseCont ext . get ByNane(" Cust oner s")
QueryDefinitions = DataSource. get QueryDefinitions()

For | = 0 To QueryDefinitions.Count() - 1
QueryDefinition = QueryDefinitions(l)

MsgBox QueryDefinition. Nanme
Next |

In addition to the Name property used in the example, the
com sun. st ar. sdb. QueryDefi ni ti on provides a whole range of other properties. These are:

= Nanme (String) —query name.
» Command (String) —SQL command (typically a SELECT command).

= Updat eTabl eNane (String) —for queries that are based on several tables: name of table in
which value modifications are possible.

= Updat eCat al ogNanme (String) —name of update tables catalogues.

= Updat eSchemaNane (String) —name of update tables diagrams.

172 StarOffice™ 7 Basic Programmer's Guide

The following example shows how a query object can be created in a program-controlled manner
and can be assigned to a data source.

Di m Dat abaseCont ext As (bj ect
Di m Dat aSour ce As (bj ect

Di m QueryDefinitions As Object
Di m QueryDefinition As Object
Dim | As |nteger

Dat abaseCont ext = creat eUnoSer vi ce("com sun. st ar. sdb. Dat abaseCont ext ")
Dat aSour ce = Dat abaseCont ext . get ByNanme(" Cust oner s")
QueryDefinitions = DataSource. get QueryDefinitions()

QueryDefinition = createUnoService("com sun. star.sdb. QueryDefinition")
QueryDefinition. Command = "SELECT * FROM Cust oner"

QueryDefinitions.insertByName("NewQuery", QueryDefinition)

The query object is first created using the cr eat eUnoSer vi ce call, then initialized, and then
inserted into the Quer yDef i ni ti ons object by means of i nsert ByNarne.

Links with Database Forms

To simplify work with data sources, StarOffice provides an option for linking the data sources with
database forms. The links are available through the get Booknmar ks() method. This returns a
named container (com sun. st ar. sdb. Defi ni ti onCont ai ner) which contains all links of the
data source. The bookmarks can either be accessed through Nare or | ndex.

The following example determines the URL of the MyBookmark bookmark.

Di m Dat abaseCont ext As Obj ect
Di m Dat aSource As Obj ect

Di m Bookmar ks As Obj ect

Dim URL As String

Dim | As I|nteger

Dat abaseCont ext = creat eUnoSer vi ce("com sun. st ar. sdb. Dat abaseCont ext ")
Dat aSour ce = Dat abaseCont ext . get ByNanme(" Cust oner s")

Bookmar ks = Dat aSour ce. Bookmar ks()

URL = Booknar ks. get ByNane(" MyBookmar k")
MsgBox URL

Chapter 10 Database Access 173

Database Access

A database connection is needed for access to a database. This is a transfer channel which permits
direct communication with the database. Unlike the data sources presented in the previous section,
the database connection must therefore be re-established every time the program is restarted.

StarOffice provides various ways of establishing database connections. Here is an explanation for
the method based on an existing data source.

Di m Dat abaseCont ext As (bj ect

Di m Dat aSource As Obj ect

Di m Connecti on As Obj ect

Di m I nteracti onHandl er as Obj ect

Dat abaseCont ext = creat eUnoServi ce("com sun. st ar. sdb. Dat abaseCont ext ")
Dat aSour ce = Dat abaseCont ext . get ByNane(" Cust oner s")

I f Not DataSource. | sPasswor dRequi red Then

Connecti on = Dat aSour ce. Get Connection("","")

El se
I nteracti onHandl er = createUnoServi ce("com sun. star. sdb. I nteractionHandl er")
Connection = DataSource. Connect Wt hConpl eti on(| nteracti onHandl er)

End | f

The code used in the example first checks whether the database is password protected. If not, it
creates the database connection required using the Get Connect i on call. The two empty strings
in the command line stand for the user name and password.

If the database is password protected, the example creates an | nt er act i onHandl er and opens

the database connection using the Connect W t hConpl et i on method. The InteractionHandler
ensures that StarOffice asks the user for the required login data.

Iteration of Tables

A table is usually accessed in StarOffice through the Resul t Set object. A Resul t Set is a type of

marker that indicates a current set of data within a volume of results obtained using the SELECT
command.

174 StarOffice™ 7 Basic Programmer's Guide

The example shows how a Resul t Set can be used to query values from a database table.

Di m Dat abaseCont ext As Obj ect

Di m Dat aSource As Obj ect

Di m Connecti on As Obj ect

Di m I nteractionHandl er as Obj ect
Di m St atement As Obj ect

Di m Resul t Set As (bj ect

Dat abaseCont ext = creat eUnoSer vi ce("com sun. st ar. sdb. Dat abaseCont ext ")
Dat aSour ce = Dat abaseCont ext . get ByNanme(" Cust oner s")

I f Not DataSource. | sPasswor dRequi red Then
Connecti on = Dat aSour ce. Get Connection("","")

El se
I nteracti onHandl er = createUnoServi ce("com sun. star. sdb. I nteractionHandl er")
Connecti on = Dat aSour ce. Connect Wt hConpl eti on(| nt eracti onHandl er)

End |f

St atement = Connection. createSt atenment ()
Resul t Set = St at enent. execut eQuery("SELECT Custoner Nunber FROM Custoner")

If Not IsNull(ResultSet) Then
Wi | e Resul t Set . next
MsgBox Resul t Set. get String(1)
Wend
End |f

Once the database connection has been established, the code used in the example first uses the
Connecti on. creat eCbj ect call to create a St at ement object. This St at ement object then
uses the execut eQuer y call to return the actual Resul t Set . The program now checks whether
the Resul t Set actually exists and traverses the data records using a loop. The values required (in
the example, those from the Cust orrer Nunber field) returns the Resul t Set using the

get St ri ng method, whereby the parameter 1 determines that the call relates to the values of the
first column.

The Resul t Set object from SDBC is comparable with the Recor dset object from DAO and ADO, since
this also provides iterative access to a database.

The database is actually accessed in StarOffice 7 through a Resul t Set object. This reflects the content
of a table or the result of a SQL-SELECT command. In the past, the Resul t Set object provided the
resident methods in the Appl i cat i on object for navigation within the data (e.g Dat aNext Recor d).

Chapter 10 Database Access 175

Type-Specific Methods for Retrieving Values

As can be seen in the example from the previous section, StarOffice provides aget St ri ng
method for accessing table contents. The method provides the result in the form of a string. The
following get methods are available:

= get Byt e() —supports the SQL data types for numbers, characters and strings.

= get Short () —supports the SQL data types for numbers, characters and strings.

= getlnt() —supports the SQL data types for numbers, characters and strings.

= getLong() -supports the SQL data types for numbers, characters and strings.

= get Fl oat () —supports the SQL data types for numbers, characters and strings.

= get Doubl e() - supports the SQL data types for numbers, characters and strings.

= get Bool ean() - supports the SQL data types for numbers, characters and strings.

= getString() —supportsall SQL data types.

= get Bytes() —supports the SQL data types for binary values.

= get Dat e() - supports the SQL data types for numbers, strings, date and time stamp.

= get Ti ne() —supports the SQL data types for numbers, strings, date and time stamp.

= get Ti nest anp() - supports the SQL data types for numbers, strings, date and time stamp.

= get Charact er Stream() —supports the SQL data types for numbers, strings and binary values.
= get Uni codeSt ream() —supports the SQL data types for numbers, strings and binary values.
= getBi naryStream() - binary values.

= get Obj ect () —supports all SQL data types.

In all instances, the number of columns should be listed as a parameter whose values should be
queried.

The ResultSet Variants

Accessing databases is often a matter of critical speed. StarOffice therefore provides several ways of
optimizing Resul t Set s and thereby controlling the speed of access. The more functions a Resul t Set
provides, the more complex its implementation usually is and therefore the slower the functions are.

A simple Resul t Set , such as that which was presented in the "Iteration of tables" section,
provides the minimum scope of functions available. It only allows iteration to be applied forward,
and for values to be interrogated. More extensive navigation options, such as the possibility of
modifying values, are therefore not included.

176 StarOffice™ 7 Basic Programmer's Guide

The St at enent object used to create the Resul t Set provides some properties which allow the
functions of the Resul t Set to be influenced:

= Result Set Concurrency (const) - specifications as to whether the data can be modified
(specifications in accordance with com sun. st ar . sdbc. Resul t Set Concurr ency).

= Result Set Type (const) - specifications regarding type of Resul t Set s (specifications in
accordance with com sun. st ar. sdbc. Resul t Set Type).

The values defined in com sun. st ar. sdbc. Resul t Set Concurr ency are:
= UPDATABLE - Resul t Set permits values to be modified.
= READ ONLY-Resul t Set does not permit modifications.

The com sun. st ar. sdbc. Resul t Set Concur r ency group of constants provides the following
specifications:

= FORWARD ONLY - Resul t Set only permits forward navigation.

= SCROLL_I NSENSI Tl VE-Resul t Set permits any type of navigation, changes to the original
data are, however, not noted.

= SCROLL_SENSI Tl VE-Resul t Set permits any type of navigation, changes to the original
data impact on the Resul t Set .

A Resul t Set containing the READ_ONLY and SCROLL_| NSENSI TI VE properties corresponds to a record
set of the Snapshot type in ADO and DAO.

When using the Resul t Set ’ s UPDATEABLE and SCROLL_SENSI TI VE properties, the scope of function
of a Resul t Set is comparable with a Dynaset type Recor dset from ADO and DAO.

Methods for Navigation in ResultSets

IfaResul t Set isa SCROLL_I NSENSI Tl VE or SCROLL_SENSI TI VE type, it supports a whole
range of methods for navigation in the stock of data. The central methods are:

= hext () —navigation to the next data record.

= previous() —navigation to the previous data record.

= first() —navigation to the first data record.

= | ast () - navigation to the last data record.

= beforeFirst() —navigation to before the first data record.
= afterlLast () —navigation to after the last data record.

All methods return a Boolean parameter which specifies whether the navigation was successful.

Chapter 10 Database Access 177

To determine the current cursor position, the following test methods are provided and all return a
Boolean value:

= isBeforeFirst() —Result Set is before the first data record.
= isAfterlLast() —Result Set is after the last data record.
» isFirst() —Result Set isthe first data record.

= islLast() —Result Set isthe last data record.

Modifying Data Records

If a Resul t Set has been created with the Resul t Set Concurrency = UPDATEABLE value, then
its content can be edited. This only applies for as long as the SQL command allows the data to be
re-written to the database (depends on principle). This is not, for example, possible with complex
SQL commands with linked columns or accumulated values.

The Resul t Set object provides Updat e methods for modifying values, which are structured in
the same way as the get methods for retrieving values. The updat eSt r i ng method, for example,
allows a string to be written.

After modification, the values must be transferred into the database using the
updat eRow() method. The call must take place before the next navigation command, otherwise
the values will be lost.

If an error is made during the modifications, this can be undone using the
cancel Rowpdat es() method. This call is only available provided that the data has not be re-
written into the database using updat eRow() .

178 StarOffice™ 7 Basic Programmer's Guide

cHapTER 11

Dialogs

You can add custom dialog windows and forms to StarOffice documents. These in turn can be
linked to StarOffice Basic macros to considerably extend the usage range of StarOffice Basic.
Dialogs can, for example, display database information or guide users through a step-by-step
process of creating a new document in the form of an AutoPilot.

Working With Dialogs

StarOffice Basic dialogs consist of a dialog window that can contain text fields, list boxes, radio
buttons, and other control elements.

Creating Dialogs

You can create and structure dialogs using the StarOffice dialog editor that you can use in the same
way as a StarOffice Draw:

@BASIE - DIgT est_suw Standard - StarOffice 7

File Edit “ew Tools MWindow Help
[Hfca s YEe B
I[DIgTest.sxw].Standard ErZ . .| A ‘!,A| B oS |) g;ﬂ 5 By

=
|57 |#1[F_Diatede ' Digbef / (=l | LlJ
[DigTest. Standard DigDer k| |

Essentially, you drag the control elements that you want from the design pallet (right) into the
dialog area where you can define their position and size.

179

The example shows a dialog that contains a label and a list box.

@BASIE - DIgT est_suw Standard - StarOffice 7
File Edit “ew Tools Wndow Help
| Ehal= el s F
JioigTest s standerd EZ=m .| e ﬁ"| B S | &) gﬁ| =
BE =
=i
L0
Entries: ABC
ut al
Entry 1 s sl
Entry 2 E!
Ertry 3 al Lo j
ntry 4 | = =i
= s
o o E €0
123 _[h
&
R
0|]> [»1[F Digtede) Digbef /£ K] I 2
DigTest. Standard DigDer k|]

You can open a dialog with the following code:
Dim D g As Obj ect

Di al ogLi brari es. LoadLi brary(" St andard")
Dl g = Creat eUnoDi al og(Di al ogLi brari es. St andar d. DI gDef)

Dl g. Execut e()
Dl g. di spose()

Cr eat eUnoDi al og creates an object called DIg that references the associated dialog. Before you
can create the dialog, you must ensure that the library it uses (in this example, the Standard
library) is loaded. If not, the LoadLi br ar y method performs this task.

Once the DI g dialog object has been initialized, you can use the Execut e method to display the
dialog. Dialogs such as this one are described as modal because they do not permit any other
program action until they are closed. While this dialog is open, the program remains in the
Execut e call.

The di spose method at the end of the code approves the resources used by the dialog once the
program ends.

180 StarOffice™ 7 Basic Programmer's Guide

Closing Dialogs

Closing With OK or Cancel

If a dialog contains an OK or a Cancel button, the dialog is automatically closed when you press
one of these buttons. More information about working with these buttons are discussed in this
Dialog Control Elements in Detail section of this chapter.

If you close a dialog by clicking the OK button, the Execut e-method returns a return value of 1,
otherwise a value of 0 is returned.

Dim Dl g As Object

Di al ogLi brari es. LoadLi brary(" St andard")
Dl g = CreateUnoDi al og(Di al ogLi braries. Standard. M/Di al og)

Sel ect Case Dl g. Execute()

Case 1

MsgBox "Ck pressed"
Case 0

MsgBox "Cancel pressed"
End Sel ect

Closing With the Close Button in the Title Bar

If you want, you can close a dialog by clicking the close button on the title bar of the dialog

window. In this instance, the Execut e method of the dialog returns the value 0, the same as
when you press the Cancel button.

Closing With an Explicit Program Call
You can also close an open dialog window with the endExecut e method:

Dl g. endExecut e()

Access to Individual Control Elements

A dialog can contain any number of control elements. You can access these elements through the
get Cont r ol method that returns the name of the control element.

DmC|l As Object

Ctl = Dig.getControl ("M/Button")
Ctl.Label = "New Label"

This code determines the object for the MyBut t on control element and then initializes the Ct |
object variable with a reference to the element. Finally the code sets the Label property of the
control element to the New Label value.

Note that StarOffice Basic distinguishes between uppercase and lowercase characters for the names
of control elements.

Chapter 11 Dialogs 181

Working With the Model of Dialogs and Control Elements

The division between visible program elements (View) and the data or documents behind them
(Model) occurs at many places in StarOffice API. In addition to the methods and properties of
control elements, both dialog and control element objects have a subordinate Model object. This
object allows you to directly access the content of a dialog or control element.

In dialogs, the distinction between data and depiction is not always as clear as in other API areas of
StarOffice. Elements of the API are available through both the View and the Model.

The Model property provides program-controlled access to the model of dialog and control
element objects.

Di m cndNext As Obj ect

cnmdNext = Dl g. get Control ("crmdNext")
cndNext . Mbdel . Enabl ed = Fal se

This example deactivates the cmdNt ext button in the DI g dialog with the aid of the model object
from cndNt ext .

Properties

Name and Title

Every control element has its own name that can be queried using the following model property:

= Mdel . Nane (String) - control element name

You can specify the title that appears in the title bar of a dialog with the following model property:

= Mdel.Title (String) —dialog title (only applies to dialogs).

Position and Size

You can query the size and position of a control element using the following properties of the
model object:

= Mdel . Hei ght (I ong) - height of control element (in ma units)
= Mdel . Wdth (| ong) —width of control element (in ma units)

= Mdel . PositionX (1 ong) —X-position of control element, measured from the left inner
edge of the dialog (in ma units)

= Mdel . PositionY (long) - Y-position of control element, measured from top inner edge of
the dialog (in ma units)

To ensure platform independence for the appearance of dialogs, StarOffice uses the Map AppFont
(ma) internal unit to specify the position and size within dialogs. A ma unit is defined as being one
eighth of the average height of a character from the system font defined in the operating system
and one quarter of its width. By using ma units, StarOffice ensures that a dialog looks the same on
different systems under different system settings.

182 StarOffice™ 7 Basic Programmer's Guide

If you want to change the size or position of control elements for runtime, determine the total size
of the dialog and adjust the values for the control elements to the corresponding part ratios.

The Map AppFont (ma) replaces the Twips unit to achieve better platform independence.

Focus and Tabulator Sequence

You can navigate through the control elements in any dialog by pressing the Tab key. The
following properties are available in this context in the control elements model:

= Mbddel . Enabl ed (Bool ean) — activates the control element
= Mbdel . Tabst op (Bool ean) —allows the control element to be reached through the Tab key
= Mbdel . Tabl ndex (Long) - position of control element in the order of activation

Finally, the control element provides a get Focus method that ensures that the underlying control
element receives the focus:

= get Focus - control element receives the focus (only for dialogs)

Multi-Page Dialogs

A dialog in StarOffice can have more than one tab page. The St ep property of a dialog defines the

current tab page of the dialog whereas the St ep property for a control element specifies the tab
page where the control element is to be displayed.

The St ep-value of 0 is a special case. If you set this value to zero in a dialog, all of the control
elements are visible regardless of their St ep value. Similarly, if you set this value to zero for a
control element, the element is displayed on all of the tab pages in a dialog.

@BASIE - DigTestsww.Standard - StarDffice 7

File Edit “ew Toolz Window Help
| = e e F
I[DIgTest.sxw].Standard Ell&=m .| e g w| B S |) gﬁ| 5 B
-
HE =
The hagic Autopilot = .£
Step 1 - List Selection (%]
Entries: Selection: AEe
Entry 1 e | EE
Entry 2 i
Entry 3 * | Al j
O lentry 4 A = =
e =
e
= or
122k
Cancel == Frey | Mext == Diare | e
5
] - L k[E
R
- -
[l 1 ggsge gner /1] | |
[DlgTest standard DigDet B[[

Chapter 11 Dialogs 183

In the preceding example, you can also assign the St ep value of 0 to the dividing line as well as
the Cancel , Pr ev, Next , and Done buttons to display these elements on all pages. You can also
assign the elements to an individual tab page (for example page 1) .

The following program code shows how the St ep value in event handlers of the Next and Pr ev
buttons can be increased or reduced and changes the status of the buttons.

Sub cndNext | nitiated
Di m cndNext As Obj ect
Di m cndPrev As bj ect

cmdPrev = Dl g. getControl ("crmdPrev")
cmdNext = DI g. get Control ("crmdNext")

crmdPr ev. Model . Enabl ed Not cndPrev. Mbdel . Enabl ed
crmdNext . Model . Enabl ed = Fal se

Dl g. Mbdel . Step = Dig. Model . Step + 1
End Sub

Sub cndPrev_Initiated
Di m cndNext As Obj ect
Di m cndPrev As Obj ect

cndPr ev Dl g. get Control ("cndPrev")
cmdNext = DI g. get Control ("crmdNext")

cndPr ev. Model . Enabl ed = Fal se
cndNext . Model . Enabl ed = True

Dl g. Mbdel . Step = Dl g. Mbdel . Step - 1
End Sub

184 StarOffice™ 7 Basic Programmer's Guide

A global DI g variable that references an open dialog must be included to make this example
possible. The dialog then changes its appearance as follows;

Page 1:

The Magic Autopilot E |
5tep 1 - List Selection

Entries: Selection:

Erntry 1 ==
Entry 2
Entry 3
Entry 4

=

BIGE[E

== Prey | Mext == | [are |

Page 2:

The Magic Autopilot E |

5tep 2 - Radio Buttons and Check Boxes

Group 1 Group 2 Checkboxes

" Option 1 a " Option 2 a [T Checkbo 1
" Option 1 b = Dption 2 b [T Checkbox 2
" Option 1 ¢ [T Checkbox 3

Cancel | [HExt == [are

Events

StarOffice dialogs and forms are based on an event-oriented programming model where you can
assign event handlers to the control elements. An event handler runs a predefined procedure when a
particular action occurs, even when the action is another event. You can also edit documents or
open databases with event handling as well as access other control elements.

StarOffice control elements recognize different types of events that can be triggered in different
situations. These event types can be divided into four groups:

= Mouse control: Events that correspond to mouse actions (for example, simple mouse
movements or a click on a particular screen location)

= Keyboard control: Events that are triggered by keyboard strokes

Chapter 11 Dialogs 185

= Focus modification: Events that StarOffice perform when control elements are activated or

deactivated

= Control element-specific events: Events that only occur in relation to certain control elements

When you work with events, ensure that you create the associated dialog in the StarOffice
development environment and that it contains the required control elements or documents (if you

the events apply to a form).

@BASIC - DIgT est.sxw Standard - StarOffice 7

File Edit “iew Tools Window Help

| HiEcd|& 8 S| % & E
[gressmsenaa 7] & WM B0 S B e s S| 0 BE
=
B =
= M
step 1 - List Selection [&
Entries: Selection: sec [
]
L N
=
=
Cahcel e Presy ! Mext == [iEte: !
= 15} 0
i
DigTest, standard Digef B[]

The preceding figure shows the StarOffice Basic development environment with a dialog window
that contains two list boxes. You can move the data from one list to the other using the buttons

between the two list boxes.

If you want to display the layout on screen, then you should create the associated StarOffice Basic
procedures so that they can be called up by the event handlers. Even though you can use these
procedures in any module, it is best to limit their use to two modules. To make your code easier to
read, you should assign meaningful names to these procedures. Jumping directly to a general
program procedure from a macro can result in unclear code. Instead, to simplify code maintenance
and troubleshooting, you should create another procedure to serve as an entry point for event
handling - even if it only executes a single call to the target procedure.

The code in the following example moves an entry from the left to the right list box of a dialog.

Sub cndSel ect | nitiated
Di m obj Li st As bj ect
| stEntries =
| st Sel ection =

If IstEntries. Sel ectedltem > 0 Then
| st Sel ection. Addlten(l stEntries. Sel ectedltem 0)
| stEntries.renoveltens(lstEntries. Sel ectedltenPos, 1)

El se
Beep
End | f
End Sub

186 StarOffice™ 7 Basic Programmer's Guide

Dl g.getControl ("I stEntries")
Dl g. get Control ("I st Sel ection")

If this procedure was created in StarOffice Basic, you can assign it to an event required using the
property window of the dialog editor.

Assign Macro E3
Aszigned macro Assigh | oK I
cmd Select _Initiated (Standard.DigCa

Femove | Cahcel |

When losing focus
key pressed
ey released

i

| Llll Help |

Macros

Existing macros it
DlgCode

StarOffice BASIC Macros
[l DigTest.sxw BASIC Macros
B standard

cmdDeselect_nitiated
cmdDeselect All_nitiated
cmdhext_Initiated
cmdPrev_Initiated

fmid Sel ted
_lhitiated

The assignment dialog lists all of the StarOffice Basic procedures. To assign a procedure to an
event, select the procedure, and then click Assign.

Parameters

The occurrence of a particular event is not always enough for an appropriate response. Additional

information may be required. For example, to process a mouse click, you may need the screen
position where the mouse button was pressed.

In StarOffice Basic, you can use object parameters to provide more information about an event to a
procedure, for example;

Sub ProcessEvent (Event As Object)

End Sub

The accuracy with which the Event object is structured and its properties depend on the type of
event that the procedure call triggers. The following sections describe event types in detail.

Regardless of the type of event, all objects provide access to the relevant control element and its
model. The control element can be reached using

Event . Sour ce
and its model using

Event . Sour ce. Model

You can use these properties to trigger an event within an event handler.

Chapter 11 Dialogs 187

Mouse Events

StarOffice Basic recognizes the following mouse events:

= Muse npved - user moves mouse

= Muse noved whil e key pressed - user drags mouse while holding down a key
= Muse button pressed - user presses a mouse button

= Mouse button rel eased - user releases a mouse button

= Mouse out si de — user moves mouse outside of the current window

The structure of the associated event objects is defined in the com sun. st ar. awt . MouseEvent
structure which provides the following information:

= Buttons (short) —button pressed (one or more constants in accordance with
com sun. st ar. awt . MouseBut t on).

= X (long) - X-coordinate of mouse, measured in pixels from the top left corner of the control
element

= Y (long) -Y-coordinate of mouse, measured in pixels from the top left corner of the control
element

= CickCount (Iong) —number of clicks associated with the mouse event (if StarOffice can
respond fast enough, ClickCount is also 1 for a double-click because only an individual event is
initiated).

The constants defined in com sun. st ar. awt . MouseBut t on for the mouse buttons are:
= LEFT - left mouse button

= Rl GHT - right mouse button

= M DDLE - middle mouse button

The following example outputs the mouse position as well as the mouse button that was pressed:

Sub MuseUp(Event As nj ect)
Dim Msg As String
Msg = "Keys: "
If Event.Buttons AND com sun. star.aw . MbuseButton. LEFT Then
Msg = Msg & "LEFT "
End | f
I f Event.Buttons AND com sun. star.aw . MouseButton. Rl GHT Then
Msg = Msg & "RIGHT "
End | f
I f Event.Buttons AND com sun. star.aw . MouseButton. M DDLE Then
Msg = Msg & "M DDLE "
End | f
Msg = Msg & Chr(13) & "Position: "
Msg = Msg & Event.X & "/" & Event.Y
MsgBox Msg
End Sub

188 StarOffice™ 7 Basic Programmer's Guide

The VBA C i ck and Doubl ecl i ck events are not available in StarOffice Basic. Instead use the StarOffice

Basic MouseUp event for the the cl i ck event and imitate the Doubl ecl i ck event by changing the application
logic.

Keyboard Events

The following keyboard events are available in StarOffice Basic:
= Key pressed - user presses a key

= Key rel eased - user releases a key

Both events relate to logical key actions and not to physical actions. If the user presses several keys
to output a single character (for example, to add an accent to a character), then StarOffice Basic
only creates one event.

A single key action on a modification key, such as the Shift key or the Alt key does not create an
independent event.

Information about a pressed key is provided by the event object that StarOffice Basic supplies to
the procedure for event handling. It contains the following properties:

= KeyCode (short) —code of the pressed key (default values in accordance with
com sun. st ar. awt . Key)

= KeyChar (String) —character that is entered (taking the modification keys into
consideration)

Chapter 11 Dialogs 189

The following example uses the Key Code property to establish if the Enter key, the Tab key, or one
of the other control keys has been pressed. If one of these keys has been pressed, the name of the
key is returns, otherwise the character that was typed is returned:

Sub KeyPressed(Event As bject)

Dim Msg As String

Sel ect Case Event. KeyCode

Case com sun. star. awt . Key. RETURN
Msg = "Return pressed"

Case com sun. star. awm . Key. TAB
Msg = "Tab pressed"

Case com sun. star. awm . Key. DELETE
Msg = "Del ete pressed"

Case com sun. st ar. awm . Key. ESCAPE
Msg = "Escape pressed"

Case com sun. star. awm . Key. DOMN
Msg = "Down pressed"

Case com sun. star. awt . Key. UP
Msg = "Up pressed"

Case com sun. star. awm . Key. LEFT
Msg = "Left pressed"

Case com sun. star. awm . Key. Rl GHT
Msg = "Ri ght pressed"

Case El se
Msg = "Character " & Event.KeyChar & " entered"

End Sel ect

MsgBox Msg

End Sub

Information about other keyboard constants can be found in the APl Reference under the
com sun. st ar. awt . Key group of constants.

Focus Events

Focus events indicate if a control element receives or loses focus. You can use these events to, for
example, determine if a user has finished processing a control element so that you can update other
elements of a dialog. The following focus events are available:

= Wen receiving focus - element receives focus
= Wen | osing focus -element loses focus
The Event objects for the focus events are structured as follows:

= FocusFl ags (short) —cause of focus change (default value in accordance with
com sun. st ar. awt . FocusChangeReason).

= Next Focus (Object) —object that receives focus (only for the When | osi ng f ocus event)

= Tenporary (Bool ean) —the focus is temporarily lost

190 StarOffice™ 7 Basic Programmer's Guide

Control Element-Specific Events

In addition to the preceding events, which are supported by all control elements, there are also
some control element-specific events that are only defined for certain control elements. The most
important of these events are:

= When |tem Changed - the value of a control element changes
= |tem Status Changed - the status of a control element changes
= Text nodified - the text of a control element changes

= Wen initiating-an action that can be performed when the control element is triggered
(for example, a button is pressed)

When you work with events, note that some events, such as the When i ni ti ati ng event, can be
initiated each time you click the mouse on some control elements (for example, on radio buttons). No
action is performed to check if the status of the control element has actually changed. To avoid such
“blind events”, save the old control element value in a global variable, and then check to see if the
value has changed when an event is executing.

The properties for the | t em St at us Changed event are:

= Selected (long) -currently selected entry
= Highlighted (long) —currently highlighted entry
= Itemd (long) -ID of entry

Dialog Control Elements in Detall

StarOffice Basic recognizes a range of control elements which can be divided into the following
groups:

Entry fields:

= Textfields

= Date fields

= Time fields

= Numerical fields

= Currency fields

= Fields adopting any format
Buttons:

= Standard buttons

= Checkboxes

= Radio Buttons

Chapter 11 Dialogs 191

Selection lists:

a List boxes

= Combo-boxes
Other control elements:

= Scrollbars (horizontal and vertical)

= Fields of groups

= Progress bars

= Dividing lines (horizontal and vertical)
= Graphics

a File selection fields

The most important of these control elements are presented below.

Buttons

A button performs an action when you click it.

The simplest scenario is for the button to trigger aWhen | ni ti ati ng event when it is clicked by
a user. You can also link another action to the button to open a dialog using the PushBut t onType
property. When you click a button that has this property set to the value of 0, the dialog remains
unaffected. If you click a button that has this property set to the value of 1, the dialog is closed, and

the Execut e method of the dialog returns the value 1 (dialog sequence has been ended correctly).
If the PushBut t onType has the value of 2, the dialog is closed and the Execut e method of the
dialog returns the value 0 (dialog closed).

The following are all of the properties that are available through the button model:
= Mdel . Backgr oundCol or (| ong) - color of background

= Mdel . Def aul t Butt on (Bool ean) — The button is used as the default value and responds
to the Enter key if it has no focus.

= Mdel . Font Descri ptor (struct) —structure that specifies the details of the font to be
used (in accordance with com sun. st ar. awt . Font Descri pt or structure)

= Mdel . Label (String) - labelthatis displayed on the button
= Mdel . Printabl e (Bool ean) —the control element can be printed
= Mdel . Text Col or (Long) - text color of the control element

= Mdel . Hel pText (String) —help text that is displayed when you move the mouse cursor
over the control element

= Mdel . Hel pURL (String) —URL of the online help for the corresponding control element

= PushButtonType (short) —action thatis linked to the button (0: no action, 1: OK, 2: Cancel)

192 StarOffice™ 7 Basic Programmer's Guide

Option Buttons

These buttons are generally used in groups and allow you to select from one of several options.
When you select an option, all of the other options in the group are deactivated. This ensures that
at any one time, only one option button is set.

An option button control element provides two properties:

= State (Bool ean) - activates the button

= Label (String) -labelthatis displayed on the button

You can also use the following properties from the model of the option buttons:

= Mbdel . Font Descriptor (struct) —structure with details of the font to be used (in
accordance with com sun. st ar. awt . Font Descri pt or)

= Mbddel . Label (String) -label thatis displayed on the control element
= Mbdel . Printabl e (Bool ean) - control element can be printed

= Mdel. State (Short) —ifthis property is equal to 1, the option is activated, otherwise it is
deactivated

= Mbdel . Text Col or (Long) - text color of control element

= Mdel . Hel pText (String) —help text that is displayed when the mouse cursor rests over
the control element

= Mbdel . Hel pURL (String) —URL of online help for the corresponding control element

To combine several option buttons in a group, you must position them one after another in the
activation sequence without any gaps (Model . Tabl ndex property, described as Order in the
dialog editor). If the activation sequence is interrupted by another control element, then StarOffice
automatically starts with a new control element group that can be activated regardless of the first
group of control elements.

Unlike VBA, you cannot insert option buttons in a group of control elements in StarOffice Basic. The
grouping of control elements in StarOffice Basic is only used to ensure a visual division by drawing a frame
around the control elements.

Checkboxes

Checkboxes are used to record a Yes or No value and depending on the mode, they can adopt two or
three states. In addition to the Yes and No states, a check box can have an in-between state if the
corresponding Yes or No status has more than one meaning or is unclear.

Checkboxes provide the following properties:
= State (Short) - state of the checkbox (0: no, 1: yes, 2: in-between state)
= Label (String) -Ilabel for the control element

= enabl eTri St at e (Bool ean) —in addition to the activated and deactivated states, you can
also use the in-between state

Chapter 11 Dialogs 193

The model object of a checkbox provides the following properties:

Model . Font Descri pt or (struct) —structure with details of the font used (in accordance
with com sun. st ar. awmt . Font Descri pt or structure)

Model . Label (String) — label for the control element

Model . Pri nt abl e (Bool ean) —the control element can be printed

Model . State (Short) - state of the checkbox (0: no, 1: yes, 2: in-between state)
Model . Tabst op (Bool ean) - the control element can be reached with the Tab key
Model . Text Col or (Long) - text color of control element

Model . Hel pText (String) —help text that is displayed when you rest the mouse cursor
over the control element

Model . Hel pURL (String) — URL of online help for the corresponding control element

Text Fields

Text fields allow users to type numbers and text. The com sun. st ar. awt . UnoControl Edi t.
service forms the basis for text fields.

A text field can contain one or more lines and can be edited or blocked for user entries. Text fields
can also be used as special currency and numerical fields as well as screen fields for special tasks.
As these control elements are based on the UnoCont r ol Edi t Uno service, their program-
controlled handling is similar.

Text fields provide the following properties:

Text (String) —current text
Sel ect edText (String) —currently highlighted text

Sel ection (Struct) —read-only highlighting of details (structure in accordance with
com sun. star. awt . Sel ecti on, with the M n and Max properties to specify the start and
end of the current highlighting)

MaxText Len (short) —maximum number of characters that you can type in the field

Edi t abl e (Bool ean) - Tr ue activates the option for entering text, Fal se blocks the entry
option (the property cannot be called up directly but only through | sEdi t abl e)

| sedi t abl e (Bool ean) - the content of the control element can be changed, read-only.

Furthermore, the following properties are provided through the associated model object:

Model . Al'i gn (short) — orientation of text (0: left-aligned, 1: centered, 2: right-aligned)
Model . Backgr oundCol or (| ong) - color of the background of the control element
Model . Bor der (short) —type of border (0: no border, 1: 3D border, 2: simple border)

Model . EchoChar (String) —echo character for password fields

194 StarOffice™ 7 Basic Programmer's Guide

= Mbddel . Font Descriptor (struct) —structure with details of font used (in accordance with
com sun. star. awt. Font Descri pt or structure)

= Mbddel . Har dLi neBr eaks (Bool ean) —automatic line breaks are permanently inserted in
the control element text

= Mdel . HScroll (Bool ean) -

= Mdel . MaxText Len (Short) —maximum length of text, where 0 corresponds to no length
limit

= Mdel.MiltilLine (Bool ean) —permits entry to spans several lines

= Mbdel . Printabl e (Bool ean) —the control element can be printed

= Mdel . ReadOnly (Bool ean) - the content of the control element is read-only

= Mbddel . Tabst op (Bool ean) - the control element can be reached with the Tab key

= Mdel . Text (String) —textassociate with the control element

= Mbddel . Text Col or (Long) - text color of control element

= Mdel . VScroll (Bool ean) - the text has a vertical scrollbar

= Mdel . Hel pText (String) - help text that is displayed when the mouse cursor rests over
the control element

= Mbdel . Hel pURL (String) —URL of online help for the corresponding control element

List Boxes

List boxes (com sun. st ar. awt . UnoCont r ol Li st Box service) support the following properties:
= |tenCount (Short) —number of elements, read-only

= Selectedltem (String) —text of highlighted entry, read-only

= Selectedltens (Array OF Strings) —data field with highlighted entries, read-only

= Sel ectedltenPos (Short) —number of the entry highlighted at present, read-only

= SelectedltensPos (Array of Short) - datafield with the number of highlighted entries
(for lists which support multiple selection), read-only

= MiltipleMbde (Bool ean) —Tr ue activates the option for multiple selection of entries,
Fal se blocks multiple selections (the property cannot be called up directly but only through
I sMul ti pl eMbde)

= IsMultipleMde (Bool ean) - permits multiple selection within lists, read-only

Chapter 11 Dialogs 195

List boxes provide the following methods:
= addltem (lItem Pos) —enters the string specified in the | t eminto the list at the Pos position

= addlitems (ItenmArray, Pos) —entersthe entries listed in the string’s | t enAr r ay data
field into the list at the Pos position

= renmoveltens (Pos, Count) —-removes Count entries as of the Pos position

= selectltem (Item Sel ect Mode) —activates or deactivates highlighting for the element
specified in the string | t emdepending on the Sel ect Mode Boolean variable

= nmakeVi si bl e (Pos) - scrolls through the list field so that the entry specified with Pos is
visible

The model object of the list boxes provides the following properties:
= Mdel . Backgr oundCol or (1| ong) —background color of control element
= Mdel . Border (short) —type of border (0: no border, 1: 3D border, 2: simple border)

= Mdel . Font Descri ptor (struct) —structure with details of font used (in accordance with
com sun. star. awt . Font Descri pt or structure)

= Mdel . Li neCount (Short) —number of lines in control element

= Mdel.MiltiSel ecti on (Bool ean) —permits multiple selection of entries

= Mdel. Sel ectedltens (Array of Strings) - listof highlighted entries

= Mdel.Stringlteniist (Array of Strings) -listof all entries

= Mdel . Printabl e (Bool ean) —the control element can be printed

= Mdel . ReadOnly (Bool ean) —the content of the control element is read-only

= Mdel . Tabst op (Bool ean) - the control element can be reached with the Tab key.
= Mdel . Text Col or (Long) - text color of control element

= Mdel . Hel pText (String) —automatically displayed help text which is displayed if the
mouse cursor is above the control element

= Mdel . Hel pURL (String) —URL of online help for the corresponding control element

The VBA option for issuing list entries with a numerical additional value (I t enrDat a) does not exist in
StarOffice Basic. If you want to administer a numerical value (for example a database ID) in addition to the
natural language text, you must create an auxiliary data field that administers in parallel to the list box.

196 StarOffice™ 7 Basic Programmer's Guide

CHAPTER 12

Forms

In many respects, the structure of StarOffice-forms corresponds to the dialogs discussed in the
previous chapter. There are, however, a few key differences:

= Dialogs appear in the form of one single dialog window, which is displayed over the document
and does not permit any actions other than dialog processing until the dialog is ended. Forms,
on the other hand, are displayed directly in the document, just like drawing elements.

= A dialog editor is provided for creating dialogs, and this can be found in the StarOffice Basic
development environment. Forms are created using the Form Functions Toolbar directly
within the document.

= Whereas the dialog functions are available in all StarOffice documents, the full scope of the
form functions are only available in text and spreadsheets.

= The control elements of a form can be linked with an external database table. This function is
not available in dialogs.

= The control elements of dialogs and forms differ in several aspects.

Users who want to provide their forms with their own methods for event handling, should refer to
Chapter 11 (Dialogs). The mechanisms explained there are identical to those for forms.

Working with Forms

StarOffice forms may contain text fields, list boxes, radio buttons, and a range of other control
elements, which are inserted directly in a text or spreadsheet. The Form Functions Toolbar is used
for editing forms.

A StarOffice form may adopt one of two modes: the draft mode and the display mode. In draft
mode, the position of control elements can be changed and their properties can be edited using a
properties window.

The Form Functions Toolbar is also used to switch between modes.

197

Determining Object Forms

StarOffice positions the control elements of a form at drawing object level. The actual object form
can be accessed through the For ns list at drawing level. The objects are accessed as follows in text
documents:

Di m Doc As Obj ect
Di m Dr awPage As Obj ect
Di m Form As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Dr awPage = Doc. Dr awPage
Form = Dr awPage. For ns. Get Byl ndex(0)

The Get Byl ndex method returns the form with the index number 0.

When working with spreadsheets, an intermediate stage is needed the Sheet s list because the
drawing levels are not located directly in the document but in the individual sheets:

Di m Doc As (bj ect

Di m Sheet As Obj ect

Di m Dr awPage As Obj ect
Di m Form As Obj ect

Doc = St ar Deskt op. Curr ent Conponent
Sheet = Doc. Sheet s. Get Byl ndex(0)

Dr awPage = Sheet. DrawPage

Form = Dr awPage. For ns. Get Byl ndex(0)

As is already suggested by the Get Byl ndex method name, a document may contain several
forms. This is useful, for example, if the contents of different databases are displayed within one
document, or if a 1:n database relationship is displayed within a form. The option of creating sub-
forms is also provided for this purpose.

The Three Aspects of a Control Element Form

A control element of a form has three aspects:

= First, there is the Model of the control element. This is the key object for the StarOffice Basic-
programmer when working with control element forms.

= The counterpart to this is the View of the control element, which administers the display
information.

= Since control element forms within the documents are administered like a special drawing
element, there is also a Shape object which reflects the drawing element-specific properties of the
control element (in particular its position and size).

198 StarOffice™ 7 Basic Programmer's Guide

Accessing the Model of Control Element Forms

The models of the control elements of a form are available through the Get By Narme method of the
bj ect form

Di m Doc As (bj ect
Di m Form As Obj ect
DmCl As Object

Doc = St ar Deskt op. Curr ent Conponent
Form = Doc. Dr awPage. For ns. Get Byl ndex(0)
Ctl = Form get ByName(" M/Li st Box")

The example determines the model of the MyLi st Box control element, which is located in the first
form of the text document currently open.

If you is not sure of the form of a control element, you can use the option for searching through all
forms for the control element required:

Di m Doc As (bj ect
Di m Forms As Obj ect
Di m Form As Obj ect
DmcC|l As Object
Dim | as Integer

Doc = St ar Deskt op. Cur r ent Conponent
Forms = Doc. Dr awpage. For ns

For I = 0 To Forms. Count - 1
Form = For ns. Get byl ndex(|)
I f Form HasByNanme(" My/Li st Box") Then
Ctl = Form Get byName(" My/Li st Box")
Exit Function
End |f
Next |

The example uses the Has By Narre method to check all forms of a text document to determine
whether they contain a control element model called MyLi st Box. If a corresponding model is
found, then a reference to this is saved in the Ct | variable and the search is terminated.

Chapter 12 Forms 199

Accessing the View of Control Element Forms

To access the view of a control element form, the associated model is first needed. The view of the
control element can then be determined with the assistance of the model and using the document
controller.

Di m Doc As (bj ect
Di m DocCrl As Obj ect
Di m Forns As Obj ect
Di m Form As Obj ect
DmCl As Object
Dim Ctl View As Obj ect
Dim| as Integer

Doc = St ar Deskt op. Curr ent Conponent
DocCrl = Doc. get Current Control er()
Fornms = Doc. Dr awpage. For ns

For I = 0 To Forns. Count - 1
Form = For ms. Get byl ndex(1)
I f Form HasByName(" MyLi st Box") Then
Ctl = Form Get byNanme(" MyLi st Box")
CtlView = DocCrl. GetControl (Ct1)
Exit Function
End |f
Next |

The code listed in the example is very similar to the code listed in the previous example for
determining a control element model. It uses not only the Doc document object but also the

DocCr | document controller object which makes reference to the current document window. With
the help of this controller object and the model of the control element, it then uses the
Get Cont r ol method to determine the view (Ct | Vi ewvariable) of the control element form.

200 starOffice™ 7 Basic Programmer's Guide

Accessing the Shape Object of Control Element Forms

The method for accessing the shape objects of a control element also uses the corresponding
drawing level of the document. To determine a special control element, all drawing elements of the
drawing level must be searched through.

Di m Doc As (bj ect
Di m Shape as Obj ect
Dim | as integer

Doc = St ar Deskt op. Curr ent Conponent

For i = 0 to Doc. DrawPage. Count - 1
Shape = Doc. Dr awPage(i)

| f HasUnol nt er f aces(Shape, _
"com sun. st ar. drawi ng. XCont r ol Shape") Then
I f Shape. Control . Name = "MyLi st Box" Then
Exit Function
End |f
End | f
Next

The example checks all drawing elements to determine whether they support the

com sun. st ar. draw ng. XCont r ol Shape interface needed for control element forms. If this is
the case, the Cont r ol . Name property then checks whether the name of the control element is
MyLi st Box. If this is true, the function ends the search.

Determining the Size and Position of Control Elements

As already mentioned, the size and position of control elements can be determined using the
associated shape object. The control element shape, like all other shape objects, provides the
Si ze and Posi ti on properties for this purpose:

= Size (struct) —size of control element (com sun. st ar. awm . Si ze data structure).
= Position (struct) —position of control element (com sun. st ar. awt . Poi nt data structure).

The following example shows how the position and size of a control element can be set using the
associated shape object:

Di m Shape As Obj ect

Poi nt. x = 1000

Point.y = 1000

Si ze. Wdth = 10000

Si ze. Hei ght = 10000

Shape. Si ze = Si ze
Shape. Position = Poi nt

The shape object of the control element must already be known if the code is to function. If this is
not the case, it must be determined using the preceding code.

Chapter 12 Forms 201

Control Element Forms in Detail

The control elements available in forms are similar to those of dialogs. The selection ranges from
simple text fields through list and combo boxes to various buttons.

Below, you will find a list of the most important properties for control element forms. All
properties form part of the associated model objects.

In addition to the standard control elements, a table control element is also available for forms, which
enables the complete incorporation of database tables. This is described in the Database Forms section
in chapter 11.

Buttons

The model object of a form button provides the following properties:
= BackgroundCol or (I ong) - background color.

= Defaul tButton (Bool ean) —the button serves as a default value. In this case, it also
responds to the entry button if it has no focus.

= Enabl ed (Bool ean) - the control element can be activated.

= Tabstop (Bool ean) —the control element can be reached through the tabulator button.
= Tabl ndex (Long) - position of control element in activation sequence.

= FontName (String) —name of font type.

= Font Hei ght (Si ngl e) —height of character in points (pt).

= Tag (String) -string containing additional information, which can be saved in the button
for program-controlled access.

= TargetURL (String) —target URL for buttons of the URL type.

= Target Frame (String) —name of window (or frame) in which Tar get URL is to be opened
when activating the button (for buttons of the URL type).

= Label (String) - button label.
= Text Col or (Long) —text color of control element.

= Hel pText (String) —automatically displayed help text which is displayed if the mouse
cursor is above the control element.

= Hel pURL (String) —URL of online help for the corresponding control element.

= ButtonType (Enum - action that is linked with the button (default value from
com sun. star. form For nButtonType).

202 StarOffice™ 7 Basic Programmer's Guide

Through the But t onType property, you have the opportunity to define an action that is
automatically performed when the button is pressed. The associated
com sun. star. form For nButt onType group of constants provides the following values:

= PUSH - standard button.
= SUBM T -end of form entry (particularly relevant for HTML forms).
= RESET - resets all values within the form to their original values.

= URL —call of the URL defined in Tar get URL (is opened within the window which was
specified through TargetFrame).

The OK and Cancel button types provided in dialogs are not supported in forms.

Option Buttons

The following properties of an option button are available through its model object:
= Enabl ed (Bool ean) —the control element can be activated.

= Tabstop (Bool ean) —the control element can be reached through the tab key.
= Tabl ndex (Long) - position of control element in the activation sequence.

= Font Nanme (String) —name of font type.

= Font Hei ght (Si ngl e) —height of character in points (pt).

= Tag (String) -string containing additional information, which can be saved in the button
for program-controlled access.

= Label (String) -inscription of button.
= Printabl e (Bool ean) -the control element can be printed.
= State (Short) —if1,the option is activated, otherwise it is deactivated.

= RefVal ue (String) -string for saving additional information (for example, for
administering data record IDs).

= Text Col or (Long) —text color of control element.

= Hel pText (String) —automatically displayed help text, which is displayed if the mouse
cursor is above the control element.

= Hel pURL (String) —URL of online help for the corresponding control element.

The mechanism for grouping option buttons distinguishes between the control elements for dialogs and
forms. Whereas control elements appearing one after another in dialogs are automatically combined to
form a group, grouping in forms is performed on the basis of names. To do this, all option buttons of a
group must contain the same name. StarOffice combines the grouped control elements into an array so
that the individual buttons of a StarOffice Basic program can be reached in the same way as previously.

Chapter 12 Forms 203

The following example shows how the model of a control element group can be determined.

Di m Doc As (bj ect
Di m Forns As Obj ect
Di m Form As Obj ect
DmCl As bject
Dim| as Integer

Doc = St ar Deskt op. Curr ent Conponent
Fornms = Doc. Dr awpage. For s

For I = 0 To Forms. Count - 1
Form = For ms. Get byl ndex(1)
I f Form HasByName(" M/Options") Then
1l = Form Get G oupbyName("M/Options")
Exit Function
End |f
Next |

The code corresponds to the previous example for determining a simple control element model. It
searches through all forms in the current text document in a loop and uses the Has By Nane method
to check whether the corresponding form contains an element with the MyOpt i ons name it is
searching for. If this is the case, then the model array is accessed using the Get Gr oupByNane
method (rather than the Get By Name method to determine simple models).

Checkboxes

The model object of a checkbox form provides the following properties:

= Enabl ed (Bool ean) -the control element can be activated.

= Tabstop (Bool ean) - the control element can be reached through the tab key.
= Tabl ndex (Long) - position of control element in the activation sequence.

= FontName (String) —name of font type.

= Font Hei ght (Si ngl e) —height of character in points (pt).

= Tag (String) -string containing additional information, which can be saved in the button
for program-controlled access.

= Label (String) - button label.
= Printabl e (Bool ean) -the control element can be printed.
= State (Short) —if1,the option is activated, otherwise it is deactivated.

= RefValue (String) -string for saving additional information (for example, for
administrating data record IDs).

= Text Col or (Long) —text color of control element.

= Hel pText (String) —automatically displayed help text, which is displayed if the mouse
cursor is above the control element.

= Hel pURL (String) —URL of online help for the corresponding control element.

204 starOffice™ 7 Basic Programmer's Guide

Text Fields

The model objects of text field forms offer the following properties:

= Align (short) —orientation of text (0: left-aligned, 1: centered, 2: right-aligned).
= BackgroundCol or (I ong) - background color of control element.

= Border (short) —type of border (0: no border, 1: 3D border, 2: simple border).
= EchoChar (String) -echocharacter for password field.

= Font Nanme (String) —name of font type.

= Font Hei ght (Si ngl e) —height of character in points (pt).

= HardLi neBreaks (Bool ean) —the automatic line breaks are permanently inserted in the
text of the control element.

= HScroll (Bool ean) —the text has a horizontal scrollbar.

= MaxText Len (Short) —maximum length of text; if 0 is specified, there are no limits.
= MiltiLine (Bool ean) - permits multi-line entries.

= Printabl e (Bool ean) -the control element can be printed.

= ReadOnly (Bool ean) - the content of the control element is read-only.

= Enabl ed (Bool ean) —the control element can be activated.

= Tabstop (Bool ean) -the control element can be reached through the tab key.
= Tabl ndex (Long) - position of the control element in the activation sequence.
= Font Nanme (String) —name of font type.

= Font Hei ght (Si ngl e) —height of character in points (pt).

= Text (String) —textof control element.

= Text Col or (Long) —text color of control element.

= VScroll (Bool ean) —the text has a vertical scrollbar.

= Hel pText (String) —automatically displayed help text, which is displayed if the mouse
cursor is above the control element.

= Hel pURL (String) —URL of online help for the corresponding control element.

Chapter 12 Forms 205

List Boxes

The model object of the list box forms provides the following properties:

BackgroundCol or (| ong) —background color of control element.
Border (short) —type of border (0: no border, 1: 3D frame, 2: simple frame).

Font Descri ptor (struct) —structure with details of font to be used (in accordance with
com sun. star. awt . Font Descri pt or structure).

Li neCount (Short) —number of lines of control element.

Mul ti Sel ecti on (Bool ean) — permits multiple selection of entries.
Sel ectedltens (Array of Strings) - listof highlighted entries.
Stringlteniist (Array of Strings) - listof all entries.

Val ueltenli st (Array of Variant) - list containing additional information for each entry
(for example, for administrating data record IDs).

Print abl e (Bool ean) —the control element can be printed.

ReadOnl y (Bool ean) - the content of the control element is read-only.

Enabl ed (Bool ean) - the control element can be activated.

Tabst op (Bool ean) —the control element can be reached through the tab key.
Tabl ndex (Long) - position of control element in the activation sequence.
Font Nane (String) —name of font type.

Font Hei ght (Si ngl e) - height of character in points (pt).

Tag (String) -string containing additional information which can be saved in the button for
program-controlled access.

Text Col or (Long) - text color of control element.

Hel pText (String) —automatically displayed help text, which is displayed if the mouse
cursor is above the control element.

Hel pURL (String) —URL of online help for the corresponding control element.

Through their Val uel t enli st property, list box forms provide a counterpart to the VBA property,
I t enDat a, through which you can administer additional information for individual list entries.

Furthermore, the following methods are provided though the view object of the list box:

addltem (Item Pos) - inserts the string specified in the | t emat the Pos position in the list.

addl terms (ltemArray, Pos) —insertsthe entries listed in the string’s | t emAr r ay data
field in the list at the Pos position

renovel tems (Pos, Count) -removes Count entries as of the Pos position.

selectltem (lItem Sel ect Mbde) — activates or deactivates the highlighting for the
element specified in the string | t emdepending on the Sel ect Mode variable.

makeVi si bl e (Pos) - scrolls through the list field so that the entry specified by Pos is visible.

206 StarOffice™ 7 Basic Programmer's Guide

Database Forms

StarOffice forms can be directly linked to a database. The forms created in this way provide all the
functions of a full database front end without requiring independent programming work.

The user has the option of paging through and searching the selected tables and queries, as well as
changing data records and inserting new data records. StarOffice automatically ensures that the
relevant data is retrieved from the database, and that any changes made are written back to the
database.

A database form basically corresponds to a standard StarOffice form. In addition to the standard
properties, the following database-specific properties must also be set in the form:

= Dat aSourceName (String) —name of data source (refer to Chapter 10, Database Access;
Database access; the data source must be globally created in StarOffice).

=« Command (String) —name of table, query, or the SQL select command to which a link is to
be made.

= CommuandType (Const) - specifies whether the Command is a table, a query or a SQL
command (value from com sun. st ar. sdb. ConmandType enumeration).

The com sun. st ar. sdb. CommandType enumeration covers the following values:

= TABLE-Table

= QUERY - Query

= COMMAND- SQL command

The database fields are assigned to the individual control elements through this property:

» DataField (String) —name of linked database field.

Tables

Another control element is provided for work with databases: the table control element. This
represents the content of a complete database table or query. In the simplest scenario, a table
control element is linked to a database using the autopilot form, which links all columns with the
relevant database fields in accordance with the user specifications. Because the associated API is
relatively complex, we shall not provide a complete description of the API at this point.

Chapter 12 Forms 207

208 starOffice™ 7 Basic Programmer's Guide

Appendix

VBA Migrations Tips

List of characters (Word) 87

List of sentences (Word) 87

List of words (Word) 87

Font object (Excel, Word) 89

List of borders (Word) 89

Shading object (Word) 89
ParagraphFormat object (Word) 89
Range.MoveStart method (Word) 94
Range.MoveEnd method (Word) 94
Range.InsertBefore method (Word) 94
Range.InsertAfter method (Word) 94
Replacement object (Word) 100

Find object (Word) 100

Tables.Add method (Word) 103
Frames.Add method (Word) 108

Fields.Add method (Word) 110
List of rows (Excel) 118

List of columns (Excel) 118
Range.Insert method (Excel) 123
Range.Delete method (Excel) 123
Range.Copy method (Excel) 123
Interior object (Excel) 123
PageSetup object (Excel, Word) 126
Worksheet.ChartObjects (Excel) 160
ADO Library 169

Recordset object (DAO, ADO) 175
Snapshot object (ADO, DAO) 177
Dynaset object (ADO, DAO) 177
Dialogs 179

Twips 183

StarOffice 5.x Migration Tips

Documents.Open method 75
Document object 77

Font object 89

Paragraph object 89

Border object 89
SearchSettings object 100
List of tables 103
SetCurField method 111
InsertField method 111
DeleteUserField method 111
Application.DataNextRecord method 175

Application.OpenTableConnection method 175

209

Index

A
AdjustBlue 153
AdjustContrast 153
AdjustGreen 153
AdjustLuminance 153
AdjustRed 153
afterLast 177
Alignment 161
AllowAnimations 158
AnchorType 102
AnchorTypes 102
Annotations
as field in text documents 113
ANSI 17
API Reference 69
Area 162
Area Diagrams 168
ArrangeOrder 165
Arrays
checking 47
dynamic size changes 25
multi-dimensional 25
simple 24
Specified Value for Start Index 25
arrays 24
ASCII 17
AsTemplate 76
Author 113
AutoMax 165
AutoMin 165
AutoOrigin 165
AutoStepHelp 165
AutoStepMain 165

AXxes
of diagrams 164

B
BackColor 104f., 108, 126
BackGraphicFilter 126
BackGraphicLocation 126
BackGraphicURL 126
BackTransparent 126
Bar Diagrams 168
Beep 62
beforeFirst 177
Bitmaps 143
Bookmark
com.sun.star.Text 114
in text documents 114
Boolean values
converting 46
Boolean variables
comparing 31
declaring 23
linking 30
BorderBottom 138
BorderLeft 138
BorderRight 138
BorderTop 138
BottomBorder 127
BottomBorderDistance 128
BottomMargin 104, 108, 127
Buttons
of dialogues 192
of forms 202
ByRef 39
ByVal 39

211

C
cancelRowUpdates 178
CBool 46
CDate 46
CDbl 46
Cell Properties 123
Cell Ranges 133
cell template 81
CellAddress
com.sun.star.table 123
CellBackColor 123
CellContentType
com.sun.star.table 120
CellFlags
com.sun.star.sheet 135
CellProperties
com.sun.star.table 123
CellRangeAddress
com.sun.star.table 121
Cells 119
CenterHorizontally 132
CenterVertically 132
Chapter name
as field in text documents 113
Chapter number
as field in text documents 113
ChapterFormat 113
character element templates 81
Character Properties 89
character templates 81
CharacterProperties
com.sun.star.style 89
CharacterSet 76, 79
CharBackColor 89
CharColor 89
CharFontName 89
CharHeight 89
CharKeepTogether 89
CharStyleName 89
CharUnderline 89
CharWeight 89
Checkboxes
of dialogues 193
of forms 204
Cint 46
CircleEndAngle 149

212 StarOffice™ 7 Basic Programmer's Guide

CircleKind 149
Circles 148
CircleStartAngle 149
CLng 46
Close 59
Code Pages 17
collapseToEnd 96
collapseToStart 96
Collate 80
Color Gradient 141
Columns

in spreadsheets 116
Command 172
Comments 14
Comparison Operators 31
Constants 30
Content 113
Control Codes 98
Conversion Functions 45
ConvertFromUrl 74
ConvertToUrl 74
CopyCount 80
copyRange 122
CornerRadius 148
createTextCursor 94
CreateUnoDialog 180
CSng 46
CStr 46
Currency 20
Current page

as field in text documents 112
CustomShow 158

D
DatabaseContext
com.sun.star.sdb 170
Date 23, 113
Date
current system date 54
Date and time details
as field in text documents 113
checking 47
comparing 31
converting 46
declaring 23
editing 52

formatting in spreadsheets 125

linking 30

System date and time 54
DateTimeValue 113
Day 53
DBG_methods 68
DBG_properties 68
DBG_supportetinterfaces 68
Deep 168
Defining printer paper tray 127
Desktop

com.sun.star.frame 73
Dim 16
Dim3D 167
Dir 55
Direct formatting 88, 92
Displaying Messages 60
DisplayLabels 165
dispose 180
Do...Loop 35
Documents

creating 77

exporting 77

importing 75

opening 75

printing 79

saving 77
Double 20
DrawPages 137

E
Editing directories 56
Editing files 55
Editing text files 59
Ellipses 148
EllipseShape
com.sun.star.drawing 148
end 158
endExecute 181
Environ 63
Eof 60
Error Handling 41
Events
for dialogue and forms 185
Execute 180
return values 181

Exit Function 38
Exit Sub 38
Exponential Writing Style 22

F
file:/// 74

FileCopy 57

FileDateTime 58

FileLen 58

FileName 80

Fill Properties 140
FillBitmapURL 143

FillColor 140
FillTransparence 144
FilterName 76, 79
FilterOptions 76, 79

first 177

FirstPage 158

Floor 163

FooterBackColor 130
FooterBackGraphicFilter 130
FooterBackGraphicLocation 130
FooterBackGraphicURL 130
FooterBackTransparent 130
FooterBodyDistance 129
FooterBottomBorder 130
FooterBottomBorderDistance 130
FooterHeight 129
FooterlsDynamicHeight 129
FooterlsOn 129
FooterlsShared 130
FooterLeftBorder 130
FooterLeftBorderDistance 130
FooterLeftMargin 129
FooterRightBorder 130
FooterRightBorderDistance 130
FooterRightMargin 129
Footers 128
FooterShadowFormat 130
FooterText 131
FooterTextLeft 131
FooterTextRight 132
FooterTopBorder 130
FooterTopBorderDistance 130
For...Next 33

Format 51

Index 213

frame templates 81
Function 37
Functions 37

G
Gamma 153
GapWidth 165
GeneralFunction
com.sun.star.sheet 133
GetAttr 57
getColumns 105
getControl 181
getCurrentControler 200
getElementNames 70
getPropertyState 92
getRows 104
getTextTables 103
Global 28
goLeft 95
goRight 95
gotoEnd 95
gotoEndOfParagraph 95
gotoEndOfSentence 95
gotoEndOfWord 95
gotoNextParagraph 95
gotoNextSentence 95
gotoNextWord 95
gotoPreviousParagraph 95
gotoPreviousSentence 95
gotoPreviousWord 95
gotoRange 95
gotoStart 95
gotoStartOfParagraph 95
gotoStartOfSentence 95
gotoStartOfWord 95
Gradient
com.sun.star.awt 141
GraphicColorMode 153
Graphics 153
GraphicURL 153

H

hasByName 70
HasLegend 161
hasLocation 78
HasMainTitle 160

214 starOffice™ 7 Basic Programmer's Guide

hasMoreElements 72
HasSecondaryXAxis 164
HasSecondaryXAxisDescription 164
HasSubTitle 160
HasUnolnterfaces 201
HasXAxis 164
HasXAxisDescription 164
HasXAxisGrid 164
HasXAxisHelpGrid 164
HasXAxisTitle 164
Hatch

com.sun.star.drawing 142
Hatches 142
HeaderBackColor 129
HeaderBackGraphicFilter 129
HeaderBackGraphicLocation 129
HeaderBackGraphicURL 129
HeaderBackTransparent 129
HeaderBodyDistance 128
HeaderBottomBorder 129
HeaderBottomBorderDistance 129
HeaderFooterContent

com.sun.star.sheet 131
HeaderHeight 128
HeaderlsDynamicHeight 128
HeaderlsOn 128
HeaderlsShared 129
HeaderLeftBorder 128
HeaderLeftBorderDistance 129
HeaderLeftMargin 128
HeaderRightBorder 129
HeaderRightBorderDistance 129
HeaderRightMargin 128
Headers 128
HeaderShadowFormat 129
HeaderText 131
HeaderTextLeft 131
HeaderTextRight 131
HeaderTopBorder 129
HeaderTopBorderDistance 129
Height 105, 108, 117, 127, 138
HelpMarks 165
Hexadecimal Values 22
HoriJustify 124
HoriOrient 108
Hour 53

I

If..Then...Else 31
Imitated properties 66
Indirect formatting 89, 92
Info 171

initialize 103

Input Box 62
InputBox 62
insertBylndex 72
insertByName 71
insertCell 121
insertTextContent 102f.
InStr 50

Integer 19

Interfaces 67
isAfterLast 178
IsAlwaysOnTop 158
IsArray 47
IsAutoHeight 105
IsAutomatic 158
isBeforeFirst 178

IsCellBackgroundTransparent 123

isCollapsed 96

IsDate 47, 113
IsEndless 158
isEndOfParagraph 95
isEndOfSentence 95
isEndOfWord 95
isFirst 178

IsFixed 113
IsFullScreen 158
IsLandscape 127
isLast 178

isModified 78
IsMouseVisible 158
IsNumeric 47
IsPasswordRequired 171
IsReadOnly 171
isReadonly 78
IsStartOfNewPage 117
isStartOfParagraph 95
isStartOfSentence 95
isStartOfWord 95
IsTextWrapped 124
IsVisible 116f.

J
JDBC 169
JumpMark 76

K
Key

of diagrams 160
Kill 57

L
last 177
layers 137
Left 49
LeftBorder 127
LeftBorderDistance 128
LeftMargin 104, 108, 127
LeftPageFooterContent 130
LeftPageHeaderContent 130
Legend 161
Len 49
Level 113
Line break
in program code 13
in strings 17
line break 98
Line Diagrams 167
LineColor 144
LineJoint 144
Lines 150, 167
LineStyle 144
LineStyle
com.sun.star.drawing 144
LineTransparence 144
LineWidth 144
List boxes
of dialogues 195
of forms 206
loadComponentFromURL 73
LoadLibrary 180
Logarithmic 165
Logical Operators 30
Long 19
Loops 33

Index 215

M

Map AppFont 182
Markers 15
Marks 165
Mathematical Operators 30
Max 165
Methods 67

Mid 49, 51

Min 165

Minute 53

MKkDir 56
Module 67
Month 53
moveRange 122
MsgBox 60

N
Name 57, 80, 171f.
next 177
nextElement 72
Now 54
Number 138
Number of characters

as field in text documents 112
Number of words

as field in text documents 112
NumberFormat 113, 125, 165
NumberFormatsSupplier 171
numbering templates 81
NumberingType 112
NumberOfLines 168
Numbers

checking 47

comparing 31

converting 46

declaring 19

formatting 51

linking 30

@)

Octal Values 23
ODBC 169
Offset 112

On Error 41
Open ... For 59
Operators 30

216 StarOffice™ 7 Basic Programmer's Guide

comparable 31

logical 30

mathematical 30

mathematical operators 30
OptimalHeight 117
OptimalWidth 117
Option Buttons

of dialogues 193

of forms 203
Optional Parameters 40
Orientation 124, 138
Origin 165
Overlap 165
Overwrite 79

P
Page Background 126
Page Format 127
Page Margin 127
Page margin 127
Page numbers
as field in text documents 112
Page Properties 126
Page shadow 127
page templates 81
Pages 80
PageStyle 116
PaperFormat 80
PaperQOrientation 80
PaperSize 80
ParaAdjust 90
ParaBackColor 90
ParaBottomMargin 90
Paragraph
com.sun.star.text 86
paragraph break 98
Paragraph Portions 86
Paragraph Properties 90
paragraph templates 81
ParagraphProperties
com.sun.star.style 90
Paragraphs 86
ParalLeftMargin 90
ParaLineSpacing 90
ParamArray 40
ParaRightMargin 90

ParaStyleName 90
ParaTabStops 90
ParaTopMargin 90
Passing Parameters 39
Password 76, 79, 171
Pause 158
Percent 167
Pie Diagrams 168
Polypolygon Shapes 151
PolyPolygonShape
com.sun.star.drawing 151
presentation templates 81
PresentationDocument
com.sun.star.presentation 158
previous 177
Print 59
PrintAnnotations 132
PrintCharts 132
PrintDownFirst 132
PrintDrawing 132
PrinterPaperTray 127
PrintFormulas 132
PrintGrid 132
PrintHeaders 132
PrintObjects 132
PrintZeroValues 132
Private 29
Procedures 37
Properties 66
PropertyState
com.sun.star.beans 92
protected space 98
Public 28

Q

Queries 171

R

ReadOnly 76

Rectangle Shapes 148

RectangleShape
com.sun.star.drawing 148

Recursion 41

Regular expressions 99, 101

rehearseTimings 158

removeBylndex 72

removeByName 71
removeRange 122
removeTextContent 102
RepeatHeadline 104
Replace

in text documents 101
replaceByName 71
ResultSetConcurrency 177
ResultSetType 177
Resume 42
Right 49
RightBorder 127
RightBorderDistance 128
RightMargin 104, 108, 127
RightPageFooterContent 131
RightPageHeaderContent 130
RmDir 56
RotateAngle 124, 156
Rotating

of drawing elements 156
Rows

in spreadheets 116

S
Scope 27
SDBC 169
Search

in text documents 98
SearchBackwards 99
SearchCaseSensitive 99
SearchDescriptor

com.sun.star.util 98
SearchRegularExpression 99
SearchSimilarity 99
SearchSimilarityAdd 99
SearchSimilarityExchange 99
SearchSimilarityRelax 99
SearchSimilarityRemove 99
SearchStyles 99
SearchWords 99
Second 53
SecondaryXAxis 164
Select...Case 32
Services 67
Set of characters 17

ANSI 17

Index 217

ASCII 17

defining for documents 76, 79

Unicode 17
SetAttr 58
Shadow 147
Shadow Properties 147
ShadowColor 147
ShadowFormat 123, 128
ShadowTransparence 147
ShadowXDistance 147
ShadowYDistance 147
ShearAngle 156
Shearing
of drawing elements 156
Sheets 116
Shell 62
Similarity Search 100
Single 20
Single Color Fills 140
Sort 80
SplineOrder 167
SplineResolution 167
SplineType 167
SpreadsheetDocument
com.sun.star.sheet 115
SQL 169
Stacked 167
StackedBarsConnected 168
StarDesktop 73
start 158
Starting programs (external) 62
StartWithNavigator 158
StepHelp 165
StepMain 165
store 77
storeAsURL 79
String 18, 161
Strings
comparing 31
converting 46
declaring 17
editing 49
linking 30
StyleFamilies 82
StyleFamily
com.sun.star.style 82

218 StarOffice™ 7 Basic Programmer's Guide

Sub 39
Sub-title

of diagrams 160
Subtitle 160
supportsService 68
SuppressVersionColumns 171
syllabification 98
SymbolBitmapURL 167
SymbolSize 167
SymbolType 167

T
TableColumns

com.sun.star.table 116
TableFilter 171
TableRows

com.sun.star.table 116
TableTypeFilter 171
Templates 81
Text Fields 110
Text fields

of dialogues 194

of forms 205
Text Frames 107
TextAutoGrowHeight 146
TextAutoGrowWidth 146
TextBreak 165
TextCanOverlap 165
TextContent

com.sun.star.text 102
TextCursor 94
TextField

com.sun.star.text 110
TextFrame

com.sun.star.text 107
TextHorizontalAdjust 146
TextLeftDistance 146
TextLowerDistance 146
Textproperty

of drawing objects 145
TextRightDistance 146
TextRotation 161, 165
TextTable

com.sun.star.text 86, 103
TextUpperDistance 146
TextVerticalAdjust 146

TextWrap 102
Time 54
Title 160
Title

of diagrams 160
TopBorder 127
TopBorderDistance 128
TopMargin 104, 108, 127
Transparency 144, 153
Twips 183
Type Conversions 45

U

Unicode 17

Unpacked 79
UpdateCatalogName 172
updateRow 178
UpdateSchemaName 172
UpdateTableName 172
URL 171

URL Notation 74

UsePn 158

User 171

\Y
Variable declaration
explicit 16
global 28
implicit 15
local 27
private 29
public domain 28
Variable names 15
Variable types
Boolean values 23
data fields 24
Date and time details 23
Numbers 19
strings 18
Variant 16
Variant 16
Vertical 168
VertJustify 124
VertOrient 105, 108

W

Wait 63

Wall 163

Weekday 53

Width 104, 108, 117, 127, 138

X
XAXxis 164
XAxisTitle 164
XComponentLoader
com.sun.star.frame 73
XEnumeration
com.sun.star.container 72
XEnumerationAccess
com.sun.star.container 72
XHelpGrid 164
XIndexAccess
com.sun.star.container 71
XIndexContainer
com.sun.star.container 72
XMainGrid 164
XML File Format 74
XMultiServiceFactory
com.sun.star.lang 69
XNameAccess
com.sun.star.container 70
XNameContainer
com.sun.star.container 71
XRangeMovement
com.sun.star.sheet 121
XStorable
com.sun.star.frame 77

Y
Year 53

Index 219

	Basic Programmer's Guide StarOffice[TM] 7
	Contents
	Introduction
	About StarOffice Basic
	Intended Users of StarOffice Basic
	Use of StarOffice Basic
	Structure of This Guide
	More Information

	The Language of StarOffice Basic
	An Overview of a StarOffice Basic Program
	Program Lines
	Comments
	Markers

	Working With Variables
	Implicit Variable Declaration
	Explicit Variable Declaration

	Strings
	From a Set of ASCII Characters to Unicode
	String Variables
	Specification of Explicit Strings

	Numbers
	Integer Variables
	Long Integer Variables
	Single Variables
	Double Variables
	Currency Variables
	Specification of Explicit Numbers

	True and False
	Boolean Variables

	Date and Time Details
	Date Variables

	Data Fields
	Simple Arrays
	Specified Value for Start Index
	Multi-Dimensional Data Fields
	Dynamic Changes in the Dimensions of Data Fields

	Scope and Life Span of Variables
	Local Variables
	Public Domain Variables
	Global Variables
	Private Variables

	Constants
	Operators
	Mathematical Operators
	Logical Operators
	Comparison Operators

	Branching
	If...Then...Else
	Select...Case

	Loops
	For...Next
	Do...Loop
	Programming Example: Sorting With Embedded Loops

	Procedures and Functions
	Procedures
	Functions
	Terminating Procedures and Functions Prematurely
	Passing Parameters
	Optional Parameters
	Recursion

	Error Handling
	The On Error Instruction
	The Resume Command
	Queries Regarding Error Information
	Tips for Structured Error Handling

	The Runtime Library of StarOffice Basic
	Conversion Functions
	Implicit and Explicit Type Conversions
	Checking the Content of Variables

	Strings
	Working with Sets of Characters
	Accessing Parts of a String
	Search and Replace
	Formatting Strings

	Date and Time
	Specification of Date and Time Details within the Program Code
	Extracting Date and Time Details
	Retrieving System Date and Time

	Files and directories
	Administering Files
	Writing and Reading Text Files

	Message and Input Boxes
	Displaying Messages
	Input Box For Querying Simple Strings

	Other functions
	Beep
	Shell
	Wait
	Environ

	Introduction to the StarOffice API
	Universal Network Objects (UNO)
	Properties and Methods
	Properties
	Methods

	Module, Services and Interfaces
	Tools for Working with UNO
	The supportsService Method
	Debug Properties
	API Reference

	An Overview of a Few Central Interfaces
	Creating Context-Dependent Objects
	Named Access to Subordinate Objects
	Index-Based Access to Subordinate Objects
	Iterative Access to Subordinate Objects

	Working with StarOffice Documents
	The StarDesktop
	Basic Information about Documents in StarOffice
	Creating, Opening and Importing Documents
	Document Objects

	Templates
	Details about various formatting options

	Text Documents
	The Structure of Text Documents
	Paragraphs and Paragraph Portions

	Editing Text Documents
	The TextCursor
	Searching for Text Portions
	Replacing Text Portions

	Text Documents: More than Just Text
	Tables
	Text Frames
	Text Fields
	Bookmarks

	Spreadsheet Documents
	The Structure of Table-Based Documents (Spreadsheets)
	Spreadsheets
	Rows and Columns
	Cells
	Formatting

	Editing Spreadsheet Documents Efficiently
	Cell Ranges
	Searching and Replacing Cell Contents

	Drawings and Presentations
	The Structure of Drawings
	Pages
	Elementary Properties of Drawing Objects
	An Overview of Various Drawing Objects

	Editing Drawing Objects
	Grouping Objects
	Rotating and Shearing Drawing Objects
	Searching and Replacing

	Presentations
	Working With Presentations

	Diagrams (Charts)
	Using Diagrams in Spreadsheets
	The Structure of Diagrams
	The Individual Elements of a Diagram
	Example
	3D Diagrams
	Stacked Diagrams

	Diagram Types
	Line Diagrams
	Area Diagrams
	Bar Diagrams
	Pie Diagrams

	Database Access
	SQL: a Query Language
	Types of Database Access
	Data Sources
	Queries
	Links with Database Forms

	Database Access
	Iteration of Tables
	Type-Specific Methods for Retrieving Values
	The ResultSet Variants
	Methods for Navigation in ResultSets
	Modifying Data Records

	Dialogs
	Working With Dialogs
	Creating Dialogs
	Closing Dialogs
	Access to Individual Control Elements
	Working With the Model of Dialogs and Control Elements

	Properties
	Name and Title
	Position and Size
	Focus and Tabulator Sequence
	Multi-Page Dialogs

	Events
	Parameters
	Mouse Events
	Keyboard Events
	Focus Events
	Control Element-Specific Events

	Dialog Control Elements in Detail
	Buttons
	Option Buttons
	Checkboxes
	Text Fields
	List Boxes

	Forms
	Working with Forms
	Determining Object Forms
	The Three Aspects of a Control Element Form
	Accessing the Model of Control Element Forms
	Accessing the View of Control Element Forms
	Accessing the Shape Object of Control Element Forms

	Control Element Forms in Detail
	Buttons
	Option Buttons
	Checkboxes
	Text Fields
	List Boxes

	Database Forms
	Tables

	Appendix
	VBA Migrations Tips
	StarOffice 5.x Migration Tips

